Skip to main content
Log in

Mechanisms of Fungal Resistance

An Overview

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The increased use of antifungal agents in recent years has resulted in the development of resistance to these drugs. The significant clinical implication of resistance has led to heightened interest in the study of antifungal resistance from different angles. In this article we discuss antifungal susceptibility testing, the mode of action of antifungals and mechanisms of resistance.

Antifungals are grouped into five groups on the basis of their site of action: (i) azoles, which inhibit the synthesis of ergosterol (the main fungal sterol); (ii) polyenes, which bind to fungal membrane sterol, resulting in the formation of aqueous pores through which essential cytoplasmic materials leak out; (iii) allylamines, which block ergosterol biosynthesis, leading to accumulation of squalene (which is toxic to the cells); (iv) candins (inhibitors of the fungal cell wall), which function by inhibiting the synthesis of β 1,3-glucan (the major structural polymer of the cell wall); and (v) flucytosine, which inhibits macromolecular synthesis.

Different mechanisms contribute to the resistance of antifungal agents. These mechanisms include modification of ERG11 gene at the molecular level (gene mutation, conversion and overexpression), over expression of specific drug efflux pumps, alteration in sterol biosynthesis, and reduction in the intracellular concentration of target enzymes. Approaches to prevent and control the emergence of antifungal resistance include prudent use of antifungals, treatment with the appropriate antifungal and conducting surveillance studies to determine the frequency of resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1

Similar content being viewed by others

References

  1. Schooley R. HIV pathogenesis. 49th Annual Montagna Symposium on the Biology of Skin; 2000 Aug 12–16; Showmass Village, Colorado

  2. Anaissie EJ, Bodey GP. Nosocomial fungal infections: old problems and new challenges. Infect Dis Clin North Am 1989; 3: 867–82

    PubMed  CAS  Google Scholar 

  3. Wey SB, Mori M, Pfaller M, et al. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 1988; 148: 2642–5

    Article  PubMed  CAS  Google Scholar 

  4. McNeil MM, Nash LS, Hajjeh RA, et al. Trends in mortality due to invasive mycotic diseases in the united states, 1980–1997. Clin Infect Dis 2001; 33: 641–7

    Article  PubMed  CAS  Google Scholar 

  5. Beck-SaguÈ CM, Jarvis WR, National Nosocomial Infections Surveillance System. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. J Infect Dis 1993; 167: 1247–51

    Article  PubMed  Google Scholar 

  6. Edmond MB, Wallace DK, McClish DK, et al. Nsocomial blood stream infection in United States Hospitals: A three year analysis. Clin Infect Dis 1999; 29: 239–44

    Article  PubMed  CAS  Google Scholar 

  7. Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev 1999; 12: 40–79

    PubMed  CAS  Google Scholar 

  8. Ghannoum MA, Rice LB. Antifungal Agents: mode of action, mechanism of resistance and correlation of these mechanism with bacterial resistance. Clinical Microbiol Rev 1999; 12: 501–17

    CAS  Google Scholar 

  9. Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother 1988; 32: 1–8

    Article  PubMed  CAS  Google Scholar 

  10. Rex JH, Pfaller MA, Rinaldi MG, et al. Antifungal susceptibility testing. Clin Microbiol Rev 1993; 6: 367–81

    PubMed  CAS  Google Scholar 

  11. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeast; approved standard vol. 17. M27-A. Wayne (PA): NCCLS, 1997: 1–29

    Google Scholar 

  12. Rex JH, Pfaller MA, Galgiani JN, et al. Development of interpretive breakpoints for antifungal susceptibility testing: conceptual framework and analysis of in vitro-in vivo correlation data for fluconazole, itraconazole, and Candida infections. Subcommittee on Antifungal Susceptibility Testing of the National Committee for Clinical Laboratory Standards. Clin Infect Dis 1997; 24: 235–47

    Article  PubMed  CAS  Google Scholar 

  13. Ghannoum MA, Rex JH, Galgiani JN. Susceptibility testing of fungi: current status of correlation of in vitro data with clinical outcome. J Clin Microbiol 1996; 34: 489–95

    PubMed  CAS  Google Scholar 

  14. Powderly WG, Kobayashi GS, Herzig GP, et al. Amphotericin B-resistant yeast infection in severely immunocompromised patients. Am J Med 1988; 84: 826–32

    Article  PubMed  CAS  Google Scholar 

  15. Reference Method for broth dilution antifungal susceptibility testing of conidium-forming filamentous fungi; proposed standard [M38-P]. Wayne (PA), USA: NCCLS, 1998

  16. Odds FC, Van Gerven F, Espinel-Ingroff A, et al. Evaluation of possible correlations between antifungal susceptibilities of filamentous fungi in vitro and antifungal treatment outcomes in animal infection models. Antimicrob Agents Chemother 1998; 42: 282–8

    PubMed  CAS  Google Scholar 

  17. Hawser SP, Jessup C, Vitullo J, et al. Utility of 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl-amino) carbonyl]-2H-tetrazolium hydroxide(XTT) and minimum effective concentration assays in the determination of antifungal susceptibility of Aspergillus fumigatus to the lipopeptide class of compounds. J Clin Microbiol 2001; 39(7): 2738–41

    Article  PubMed  CAS  Google Scholar 

  18. Nozawa Y, Morita T. Molecular mechanisms of antifungal agents associated with membrane ergosterol: dysfunction of membrane ergosterol and inhibition of ergosterol biosynthesis. In: Iwata K, Vanden Bossche H, editors. In vitro and in vivo evaluation of antifungal agents. Amsterdam: Elsevier Science Publishers, 1986: 111

    Google Scholar 

  19. Kelly SL, Lamb DC, Corran AJ, et al. Mode of action and resistance to azole antifungals associated with the formation of 14α-methyl-ergosta-8,24(28)-dien-3β,6α-diol. Biochem Biophys Res Commun 1995; 207: 910–5

    Article  PubMed  CAS  Google Scholar 

  20. Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol Delta (5,6) desaturation. FEBS Lett 1997; 400: 80–2

    Article  PubMed  CAS  Google Scholar 

  21. Vanden Bossche H. Ergosterol biosynthesis inhibitors. In: Prasad R, editor. Candida albicans. Berlin, Germany: Springer-Verlag KG, 1991: 239–257

    Chapter  Google Scholar 

  22. Hitchcock C, Dickinson K, Brown SB, et al. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14α-sterol demethylase purified from Candida albicans. J Biochem (Tokyo) 1990; 266: 475–80

    CAS  Google Scholar 

  23. Vanden Bossche H, Willemsens G. Effect of the antimycotics, miconazole and ketoconazole on cytochrome P450 in yeast microsomes and rat liver microsomes. Arch Int Physiol Biochim 1982; 90: B218–9

    Google Scholar 

  24. Vanden Bossche H, Willemsens G, Cools W, et al. Biochemical effect of miconazole on fungi. II. Inhibition of ergosterol biosynthesis in Candida albicans. Chem Biol Interact 1978; 21: 59–78

    Article  PubMed  Google Scholar 

  25. Buttke TM, Chapman SW. Inhibition by ketoconazole of mitogen-induced DNA synthesis and cholesterol biosynthesis in lymphocytes. Antimicrob Agents Chemother 1983; 24(4): 478–85

    Article  PubMed  CAS  Google Scholar 

  26. Liscum L. Pharmacological inhibition of intracellular transport of low-density lipoprotein-derived cholesterol in Chinese hamster ovary cells. Biochim Biophys Acta 1990; 1045(1): 40–8

    Article  PubMed  CAS  Google Scholar 

  27. Redding SJ, Smith J, Farinacci G, et al. Resistance of Candida albicans to fluconazole during treatment of oropharyngeal candidiasis in a patient with AIDS: documentation by in vitro susceptibility testing and DNA subtype analysis. Clin Infect Dis 1994; 18: 240–2

    Article  PubMed  CAS  Google Scholar 

  28. White TC. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob Agents Chemother 1997a; 41: 1482–7

    CAS  Google Scholar 

  29. White TC. The presence of an R467K amino acid substitution and loss of alleleic variation correlate with an azole-resistant lanosterol 14α-demethylase in Candida albicans. Antimicrob Agents Chemother 1997; 41: 1488–94

    PubMed  CAS  Google Scholar 

  30. Joseph-Horne T, Hollomon DW. Molecular mechanisms of azole resistance in fungi. FEMS Microbiol Lett 1997; 149: 141–9

    Article  PubMed  CAS  Google Scholar 

  31. White TC, Marr KA, Bowden RA. Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11: 382–402

    PubMed  CAS  Google Scholar 

  32. Lamb DC, Kelly DE, White TC, et al. The R467K amino acid substitution in Candida albicans sterol 14alpha-demethylase causes drug resistance through reduced affinity. Antimicrob Agents Chemother 2000; 44: 63–7

    Article  PubMed  CAS  Google Scholar 

  33. Lamb DC, Kelly DE, Schunck WH, et al. The mutation T315A in Candida albicans sterol 14 alpha-demethylase causes reduced enzyme activity and fluconazole resistance through reduced affinity. J Biol Chem 1997; 272: 5682–8

    Article  PubMed  CAS  Google Scholar 

  34. Edlind TD, Henry KW, Metera KA, et al. Aspergillus fumigatus CYP 51 sequence; potential basis for fluconazole resistance. Med Mycol 2001; 39: 299–302

    PubMed  CAS  Google Scholar 

  35. Vanden Bossche H, Marichal HP, Odds F, et al. Characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 1992; 36: 2602–10

    Article  Google Scholar 

  36. Geber A, Hitchcock CA, Swartz JE, et al. Deletion of the Candida glabrata ERG3 and ERG 11 Genes: Effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 1995; 39: 2708–17

    Article  PubMed  CAS  Google Scholar 

  37. Venkateswarlu K, Taylor M, Manning NJ, et al. Fluconazole tolerance in clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 1997; 41: 748–51

    PubMed  CAS  Google Scholar 

  38. Parkinson T, Falconer DJ, Hitchcock C. Fluconazole resistance due to energy-dependent drug efflux in Candida glabrata. Antimicrob Agents Chemother 1995; 39: 1696–9

    Article  PubMed  CAS  Google Scholar 

  39. Clark FS, Parkinson T, Hitchcock CA, et al. Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: Possible role for drug efflux in drug resistance. Antimicrob Agents Chemother 1996; 40: 429–5

    Google Scholar 

  40. Joseph-Horne T, Hollomon D, Loeffler RS, et al. Cross-resistance to polyene and azole drugs in Cryptococcus neoformans. Antimicrob Agents Chemother 1995; 39: 1526–9

    Article  PubMed  CAS  Google Scholar 

  41. Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 1977; 41(6): 1364–8

    Google Scholar 

  42. Taglicht D, Michaelis S. A complete catalogue of Saccharomyces cerevisiae ABC proteins and their relevance to human health and disease. Methods Enzymol 1998; 292: 130–62

    Article  PubMed  CAS  Google Scholar 

  43. Sanglard D, Ischer F, Calabrese D, et al. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 1999; 43(11): 2753–65

    PubMed  CAS  Google Scholar 

  44. Sanglard D, Ischer F, Bille J. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 2001 Apr; 45(4): 1174–83

    Article  PubMed  CAS  Google Scholar 

  45. Sanglard D, Ischer F, Monod M, et al. cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 1997; 143: 405–16

    Article  PubMed  CAS  Google Scholar 

  46. Niimi M, Cannon R. Multidrug resistance genes in Candida albicans. Jpn J Med Mycol 1997; 38: 297–302

    Article  CAS  Google Scholar 

  47. Prasad R, De Wergifosse P, Goffeau A, et al. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 1995; 27: 320–9

    Article  PubMed  CAS  Google Scholar 

  48. Gottesman MM, Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 1993; 62: 385–427

    Article  PubMed  CAS  Google Scholar 

  49. Sanglard D, Kuchler K, Ischer F, et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 1995; 39: 2378–86

    Article  PubMed  CAS  Google Scholar 

  50. Albertson GD, Niimi M, Cannon RD, et al. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother 1996; 40: 2835–41

    PubMed  CAS  Google Scholar 

  51. Alarco AM, Balan I, Talibi D, et al. AP1-mediated multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a transporter of the major facilitator superfamily. J Biol Chem 1997; 297: 19304–13

    Article  Google Scholar 

  52. Fling ME, Kopf J, Tamarkin A, et al. Analysis of a Candida albicans gene that encodes a novel mechanism of resistance to benomyl and methotrexate. Mol Gen Genet 1991; 227: 318–29

    Article  PubMed  CAS  Google Scholar 

  53. Calabrese D, Bille J, Sanglard D. Anovel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 2000; 146: 2743–54

    PubMed  CAS  Google Scholar 

  54. Walsh TJ, Kasai M, Francesconi A, et al. New evidence that Candida albicans possesses additional ATP-binding cassette MDR-like genes: implications for antifungal azole resistance. J Med Vet Mycol 1997; 35: 133–7

    Article  PubMed  CAS  Google Scholar 

  55. Bouchara JP, Zouhair R, Boudouil LS, et al. In vivo selection of an azole-resistant petite mutant of Candida glabrata. J Med Microbiol 2000; 49(11): 977–84

    PubMed  CAS  Google Scholar 

  56. Osherov N, Kontoyiannis DP, Romans A, et al. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. Antimicrobial Chemother 2001; 48(1): 75–81

    Article  CAS  Google Scholar 

  57. Dannaoai E, Persat F, Borel E, et al. Sterol composition of itraconazole-resistant and itraconazole-susceptible isolates of Aspergillus fumigatus. Can J Microbiol 2001; 47(8): 706–10

    Google Scholar 

  58. Manavathu EK, Vazquez JA, Chandrasekar PH. Reduced susceptibility in laboratory-selected mutants of Aspergillus fumigatus to itraconazole due to decreased intracellular accumulation of the antifungal agents. Int J Antimicrob Agents 1999; 12(3): 213–9

    Article  PubMed  CAS  Google Scholar 

  59. Sugar AM. The polyene macrolide antifungal drugs. In: Peterson PK, Verhoef J, editors. Antimicrobial Agents Vol. 1. Amsterdam, The Netherlands: Elsevier Science Publishers, 1986: 229–244

    Google Scholar 

  60. Holz RW. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci 1974; 235: 469–79

    Article  PubMed  CAS  Google Scholar 

  61. de Kruijff B, Demel RA. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawaii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochim Biophys Acta 1974; 339: 57–70

    Article  PubMed  Google Scholar 

  62. Kerridge D. The plasma membrane of Candida albicans and its role in the action of antifungal drugs. In: Gooday GW, Lloyd D, Trinci APJ, editors. The Eukaryotic Microbial Cell. Cambridge: Cambridge University Press, 1980: 103

    Google Scholar 

  63. Kerridge D. The protoplast membrane and antifungal drugs. In: Peberdy JF, Ferenczy L,editors. Fungal Protoplasts, Applications in Biochemistry and Genetics. New York: Marcel Dekker, 1985: 135

    Google Scholar 

  64. Martins MD, Rex JH. Resistance to antifungal agents in the critical care setting: Problems and perspectives. New Horizons 1996; 4: 338–44

    PubMed  CAS  Google Scholar 

  65. Hamilton-Miller JMT. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev 1973; 37: 166–96

    CAS  Google Scholar 

  66. Capek A, Simek A. Antimicrobial agents. XII. Relationship between biochemical resistance and microbial degradation of antimycotics. Folia Microbiol (Praha) 1971; 16: 472–5

    Article  CAS  Google Scholar 

  67. Dick JD, Merz WG, Saral R. Incidence of polyene-resistant yeasts recovered from clinical specimens. Antimicrob Agents Chemother 1980; 18: 158–63

    Article  PubMed  CAS  Google Scholar 

  68. Kelly SL, Lamb DC, Taylor M, et al. Resistance to amphotericin B associated with defective sterol A8,7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 1994; 122: 39–42

    Article  PubMed  CAS  Google Scholar 

  69. Ryder NS. Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann N Y Acad Sci 1988; 544: 208–20

    Article  PubMed  CAS  Google Scholar 

  70. Lanyi J, Plachy WZ, Kates M. Lipid interactions in membranes of extremely halophilic bacteria. II. Modification of the bilayer structure by squalene. Biochemistry 1974; 13: 4914–20

    Article  PubMed  CAS  Google Scholar 

  71. Ryder N, Favre B. Antifungal activity and mechanism of action of terbinafine. Rev Contemp Pharmacother 1997; 8: 275–87

    CAS  Google Scholar 

  72. Sanglard D, Ischer F, Monod M, et al. Susceptibility of Candida albicans multidrug transporter mutants to various antifungal agents and other metabolic inhibitors. Antimicrob Agents Chemother 1996; 40: 2300–5

    PubMed  CAS  Google Scholar 

  73. Hector RF. Compounds active against cell walls of medically important fungi. Clin Microbiol Rev 1993; 6: 1–21

    PubMed  CAS  Google Scholar 

  74. Cassone A, Mason R, Kerridge D. Lysis of growing yeast-form cells of Candida albicans by echinocandin: a cytological study. Sabouraudia 1981; 19: 97–110

    Article  PubMed  CAS  Google Scholar 

  75. Tkacz JS. Glucan biosynthesis in fungi and its inhibition. In: Sutcliffe J, Georgopapadakou NH, editors. Emerging Targets in Antibacterial and Antifungal Chemotherapy. New York: Chapman & Hall, 1996: 495–523

    Google Scholar 

  76. Walsh TJ, Lee JW, Kelley P, et al. The antifungal effects of the nonlinear pharmacokinetics of cilofungin, a 1,3 β-glucan synthase inhibitor, during continuous and intermittent intravenous infusions of cilofungin in treatment of experimental disseminated candidiasis. Antimicrob Agents Chemother 1991; 35: 1321–8

    Article  PubMed  CAS  Google Scholar 

  77. Benz F, Knusel F, Nuesch J, et al. Echinocandin B. Ein neuartiges polypeptide antibiotikum aus aspergillus nidulans var. achinulatus: isolierung und bausteine [in Dutch]. Helv Chim Acta 1974; 57: 2459–77

    Article  CAS  Google Scholar 

  78. Debono M, Gordee RS. Antibiotics that inhibit fungal cell wall development. Annu Rev Microbiol 1994; 48: 471–97

    Article  PubMed  CAS  Google Scholar 

  79. Kurtz MB. New antifungal drug targets: a vision for the future. Amer Soc Microbiol News 1997; 64: 31–9

    Google Scholar 

  80. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 1997; 35: 79–86

    Article  PubMed  CAS  Google Scholar 

  81. Douglas CM, Marrinan JA, Li W, et al. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-β-D-glucan synthase. J Bacteriol 1994; 176: 5686–96

    PubMed  CAS  Google Scholar 

  82. Douglas CM, Foor F, Marrinan JA, et al. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc Natl Acad Sci U S A 1994; 91: 12907–11

    Article  PubMed  CAS  Google Scholar 

  83. Feldmesser M, Yvonne K, Mednick A, et al. The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 2000; 182: 1791–5

    Article  PubMed  CAS  Google Scholar 

  84. Vanden Bossche H, Warnock DW, Dupont B, et al. Mechanisms and clinical impact of drug resistance. J Med Vet Mycol 1994; 32: 189–202

    Article  Google Scholar 

  85. Vanden Bossche H, Willemsens G, Marichal P. Anti-Candida drugs-the biochemical basis for their activity. Crit Rev Microbiol 1987; 15: 57–72

    Article  Google Scholar 

  86. Diasio R, Bennett J, Myers C. Mode of action of 5-fluorocytosine. Biochem Pharmacol 1978; 27: 703–7

    Article  PubMed  CAS  Google Scholar 

  87. Polak A and Scholer H. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemioterapia 1975; 21: 113–30

    Article  Google Scholar 

  88. Whelan WL. The genetic basis of resistance to 5-fluorocytosine in Candida species and Cryptococcus neoformans. Crit Rev Microbiol 1987; 15: 45–56

    Article  PubMed  CAS  Google Scholar 

  89. Georgopapadakou NH, Walsh TJ. Human mycoses: drugs and targets for emerging pathogens. Science 1994; 264: 371–3

    Article  PubMed  CAS  Google Scholar 

  90. Gale EF, Johnson AM, Kerridge D, et al. Factors affecting the changes in amphotericin B sensitivity of Candida albicans during growth. J Gen Microbiol 1975; 87: 20–36

    Article  PubMed  CAS  Google Scholar 

  91. Fothergill WA, Sutton DA, Rinaldi MG. An in vitro head-to-head comparison of Schering 5692, amphotericin B, fluconazole, and itraconazole against a spectrum of filamentous fungi [abstract no. F89]. Proceedings of the 36th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans, Louisiana: American Society for Microbiology, 115

  92. Kaplan JE, Hanson D, Dworkin MS, et al. Epidemiology of human immunodeficiency virus: associated opportunistic infections in the United States in the era of highly active anti-retroviral therapy. Clin Infect Dis 2000; 30: s5–s14

    Article  PubMed  Google Scholar 

  93. Autran B, Carcelain G, Li TS, et al. Positive effect of combined antiretroviral therapy on CD4 T-cell homeostasis and function in advanced HIV disease. Science 1997; 277: 112–6

    Article  PubMed  CAS  Google Scholar 

  94. Angel JB, Kumar A, Parato K, et al. Improvement in cell-mediated immune functions during potent anti-human immunodeficiency virus therapy with ritonavir plus saquivir. J Infect Dis 1998; 177: 898–904

    Article  PubMed  CAS  Google Scholar 

  95. Duswald KH, Penk A, Pittrow L. High-dose therapy with fluconazole > or =800mg day-1. Mycoses 1997; 40: 267–77

    Article  PubMed  CAS  Google Scholar 

  96. Drlica K. A strategy for fighting antibiotic resistance: Administering drugs to force pathogens into attaining two or more mutations to grow could restrict development of resistance. ASM News 2001; 67: 27–33

    Google Scholar 

  97. Neely MN, Ghannoum MA. The exciting future of antifungal therapy. Eur J Clin Microbiol Infect Dis 2000; 19: 897–914

    Article  PubMed  CAS  Google Scholar 

  98. Hossain MA, Ghannoum MA. New investigational antifungal agents for treating invasive fungal infections. Expert Opin Investig Drugs 2000; 9: 1797–813

    Article  PubMed  CAS  Google Scholar 

  99. Chamberland S, Blais J, Cotter DP, et al. Impact of MC-510,027, a fungal efflux pump inhibitor, on the susceptibility of clinical isolates of Candida spp. to antifungal agents [abstract no. 1270]. Proceedings of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sept 26–29; San Francisco

  100. Levy SB. Starting life resistance-free. N Engl J Med 1990; 323: 335–7

    Article  PubMed  CAS  Google Scholar 

  101. Cohen ML. Epidemiology of drug resistance: implications for a post-antimicrobial era. Science 1992; 257: 1050–5

    Article  PubMed  CAS  Google Scholar 

  102. Shlaes DM, Gerding DN, John Jr JF, et al. Society for Healthcare Epidemiology of America and Infectious Diseases Society of America Joint Committee on the Prevention of Antimicrobial Resistance: guidelines for the prevention of antimicrobial resistance in hospitals. Clin Infect Dis 1997; 25: 584–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Center for Medical Mycology receives grants/contracts from the following pharmaceutical companies: Novartis Pharmaceuticals, Pfizer Pharmaceutical Group and Merck Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Ghannoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balkis, M.M., Leidich, S.D., Mukherjee, P.K. et al. Mechanisms of Fungal Resistance. Drugs 62, 1025–1040 (2002). https://doi.org/10.2165/00003495-200262070-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262070-00004

Keywords

Navigation