Skip to main content
Log in

Adenosine

An Evaluation of its Use in Cardiac Diagnostic Procedures, and in the Treatment of Paroxysmal Supraventricular Tachycardia

  • Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Synopsis

Adenosine (adenine riboside), administered either as the free base or as the 5′- triphosphate (ATP) by rapid intravenous bolus, depresses atrioventricular (AV) nodal conduction, resulting in transient A V block. Adenosine is the active agent and ATP is rapidly converted to adenosine after exogenous administration. By blocking the anterograde AV nodal limb of a re- entrant circuit, adenosine 6 to 12mg (or ATP 10 to 20mg) converts almost all episodes of paroxysmal supraventricular tachycardia (PSVT) involving the AV node within 30 seconds of administration. This is at least equivalent in efficacy to verapamil in adults, and superior to lanatoside C in children, with a considerably more rapid onset of action. Furthermore, if a dose of adenosine is ineffective, the exceptionally short plasma half- life of the adenyl nucleosides (< 10 sec) allows rapid upward dosage titration until PSVT is terminated.

Because the induced conduction block primarily affects the AV node, adenosine is a useful diagnostic tool in patients with broad or narrow QRS complex tachycardia; it terminates arrhythmias dependent on the AV node, unmasks other supraventricular mechanisms during transient AV block, but almost always has no effect on ventricular tachycardia. Noncardiac adverse effects, i.e. flushing, dyspnoea and chest pain, may occur during acute arrhythmia termination or diagnosis with adenosine, and arrhythmias may develop; however, these effects are usually transient (lasting less than 1 minute).

Adenosine has also been used to induce coronary vasodilation in patients undergoing thallium- 201 single photon emission computed tomography (201Tl SPECT), 2- dimensional echocardiography or positron emission tomography to evaluate suspected coronary artery disease. Intravenous infusion of adenosine 140 µg/kg/min for 6 minutes was generally associated with only mild adverse effects. These usually resolved within 1 to 2 minutes of discontinuing adenosine, although occasionally patients required aminophylline and/or nitroglycerin (glyceryl trinitrate). Diagnoses based on the results of scintigraphy were of a sensitivity, specificity and predictive accuracy comparable to those achieved with exercise- or dipyridamole- 201Tl SPECT.

Adenosine is therefore particularly suitable for the diagnosis of tachycardias and the acute management of PSVT involving the AV node in all age groups, without the risks of cardiac arrest and hypotension associated with verapamil. Furthermore, intravenous adenosine infusion may be used to induce coronary vasodilation in patients unable to perform exercise stress tests for 201Tl scintigraphy, and is well tolerated.

Pharmacodynamic Properties

Adenosine is an endogenous nucleoside which is involved in many biological processes. Bolus administration of intravenous adenosine produces negative chronotropic and dromotropic effects, resulting from depression of the sinoatrial (SA) and atrioventricular (AV) nodes, respectively. These effects are almost immediate, transient (about 20 sec) and dose-proportional. The negative dromotropic effects of adenosine produce prolongation of the atrial-His (AH) interval and/or AV block without affecting conduction through atrial or His-ventricular (HV) tissues. Adenosine terminates supraventricular tachycardias involving the AV node via block in the AV node in patients with accessory pathways and AV reciprocating tachycardia (AVRT), and block of the anterograde slow pathway in patients with the common slow-fast form of AV nodal re-entrant tachycardia (AVNRT); less commonly adenosine terminates AVNRT by blocking the retrograde limb. The negative chronotropic effects of adenosine produce transient sinus bradycardia followed by transient, but longer lasting reflex sinus tachycardia.

Adenosine infusion produces coronary vasodilation resulting in increased coronary blood flow velocity without increasing myocardial work. Adenosine infusion also lowers systemic vascular resistance and has been used to maintain controlled hypotension during surgery. In experimental models of reperfusion injury following coronary ischaemia, adenosine infusion has reduced infarct size and prevented the ‘no-reflow phenomenon’, probably via inhibition of neutrophil activities and improved endothelial cell preservation, in addition to providing a pool of adenine nucleotides to replace ATP degraded during ischaemia. Thus, adenosine may have a role as a cardioprotective adjunct to thrombolytic therapy in evolving myocardial infarction.

Binding of adenosine to A1 purinergic receptors results in increased potassium outward current and hyperpolarisation in atrial tissues. Both A1 and A2 adenosine receptor subtypes have been implicated in the coronary vasodilatory effects of adenosine. Regulatory G proteins are implicated in signal transduction from both receptor types but the exact mechanism by which vasodilation is achieved is unknown.

Pharmacokinetic Properties

Adenosine has a very short half-life in human blood (less than 10 sec), with almost complete elimination observed after a single pass through the coronary circulation in the isolated perfused rat heart. This precludes measurement of many standard pharmacokinetic variables. Adenosine is rapidly taken up from plasma into erythrocytes and blood vessel endothelial cells where it is converted to adenosine-5′-monophosphate and/or inosine. ATP is rapidly converted to adenosine after exogenous administration.

Clinical Use

Rapid intravenous injection of adenosine 37.5 to 250 µg/kg or ATP 10 to 20mg terminated spontaneous or electrically induced episodes of AVRT or AVNRT in more than 90% of adult and paediatric patients. The very rapid plasma clearance of adenosine allowed the dosage to be increased by 37.5 or 50 µg/kg every 1 or 2 minutes until a response occurred, without drug accumulation, but also resulted in a wide range of effective doses. Tachycardia was routinely terminated as a consequence of transient (< 10 sec) AV nodal conduction block in the anterograde limb of the re-entrant circuit in patients with AVRT or AVNRT, although block in the retrograde limb occasionally occurred. PSVT recurred in up to 37% of patients soon after re-establishment of sinus rhythm, but was often terminated by a further dose of adenosine or ATP. In comparisons with verapamil, the adenyl nucleosides were effective in a similar, if not slightly greater, proportion of patients, with a more rapid onset of action. Importantly, rapid dosage titration was possible. Similarly, significantly more children and infants responded compared to treatment with the cardiac glycoside lanatoside C, and in a significantly shorter time. Adenosine and ATP produced transient AV block in arrhythmias sustained without obligatory AV nodal involvement (e.g. atrial flutter, atrial fibrillation, intra-atrial re-entry, sinus node re-entry and ectopic atrial tachycardias), but generally did not restore sinus rhythm.

The selective transient AV block induced by adenosine and ATP is valuable in the differential diagnosis of the mechanism of broad and narrow QRS complex tachycardias in adults and children. Adenosine has a sensitivity of 90%, specificity of 94% and predictive accuracy of 92% as a test for supraventricular origin of broad complex tachycardia. An arrhythmia terminated by adenosine is likely to be a PSVT involving obligatory AV nodal conduction (i.e. AV or AV nodal reentry), although in a few instances atrial flutter, ectopic atrial tachycardia and exercise-induced ventricular tachycardia in a normal heart may also be terminated. Adenosine and ATP do not normally restore sinus rhythm in patients with PSVT without obligatory AV nodal involvement, but during transient AV block the underlying mechanism is revealed on the surface ECG. Ventricular tachycardias in patients with structural abnormalities (e.g. ischaemic heart disease) are almost never affected by adenosine and ATP. Significantly, the nucleosides can be used to elucidate the mechanism of any broad or narrow complex tachycardia, whereas verapamil may result in cardiac arrest and hypotension, particularly in patients with ventricular tachycardia misdi-agnosed from the ECG as PSVT with aberrancy.

Adenosine has also been used in the noninvasive assessment of patients with suspected coronary artery disease. Increased coronary blood flow produced by adenosine infusion permitted 201thallium single photon emission computed tomography (201Tl SPECT), 2-dimensional echocardiography (2DE) or positron emission tomography in patients unable to undergo adequate exercise stress testing. Myocardial uptake and redistribution of 201Tl is assessed following adenosine infusion, permitting identification of ischaemic and scarred areas of myocardium. Sensitivity, specificity and predictive accuracy appear to be similar to those achieved with exercise stress testing or dipyridamole-mediated vasodilation.

Tolerability

About 18% of patients given a rapid intravenous injection of adenosine or ATP experienced flushing, with dyspnoea and respiration-associated chest discomfort occurring in 12% and 7%, respectively; symptoms were transient (< 1 min) and usually mild. Asymptomatic atrial or ventricular extrasystoles occurred soon after conversion to sinus rhythm in 33 to 44% of patients, and may reinitiate PSVT. Transient atrial fibrillation has also been reported following adenosine or ATP. Intravenous adenosine infusion produces more frequent adverse effects than rapid injection, which resolve within 1 to 2 minutes of discontinuing the infusion. These effects are usually well tolerated, although aminophylline administration has been required in a few patients. Prolongation of the PR interval may occur, with first-degree AV block in some patients. ECG changes indicative of ischaemia may also occur but are also usually mild and transient. Heart rate may increase significantly and diastolic blood pressure may decrease.

Dosage and Administration

For both diagnosis and treatment of PSVT in adults, it is recommended adenosine be administered rapidly (over 1 or 2 seconds) as an intravenous bolus of 6mg into a peripheral vein. If no effect is noticed within 2 minutes a further bolus of 12mg may be given, and repeated if necessary after another 1 or 2 minutes; however, upward dose titration every 1 to 2 minutes in 2.5 or 3mg (37.5 or 50 µg/kg) increments until arrhythmia termination or to a maximum dose of 20mg (300 µg/kg) has been widely used in clinical trials. Lower doses may be required if the drug is administered into a central vein, or if the patient is also receiving dipyridamole, while those taking methylxanthines may require larger doses. Caution should be exercised when using adenosine in asthmatic patients. In clinical trials the per kilogram dosage requirements of children and infants were similar to those in adults.

The above recommendations also hold for ATP, which is given as a 10mg rapid intravenous bolus, followed by 15mg and then 20mg after 1 or 2 minutes if the first dose is ineffective.

In patients undergoing cardiac imaging or 2DE, a 6-minute intravenous infusion of adenosine 140 µg/kg/min is recommended to induce coronary vasodilation. 201Tl is administered as a bolus at 3 minutes and imaging performed 5 minutes and 4 hours after infusion completion. The infusion should be discontinued if myocardial ischaemia or other severe symptoms develop, and aminophylline and/or nitroglycerin administered if required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alazraki N, Coralli R, Galt J, Halkar R, Tarcan Y. Comparative myocardial count density in stress versus adenosine thallium-201 SPECT studies. Abstract 555. Journal of Nuclear Medicine 31: 837, 1990

    Google Scholar 

  • Babbitt DG, Virmani R, Forman MB. Intracoronary adenosine administered after reperfusion limits vascular injury after prolonged ischemia in the canine model. Circulation 80: 1388–1399, 1989

    PubMed  CAS  Google Scholar 

  • Babbitt DG, Virmani R, Vildibill Jr HD, Daughtry Norton E, Forman MB. Intracoronary adenosine administration during reperfusion following 3 hours of ischemia: effects on infarct size, ventricular function and regional myocardial blood flow. American Heart Journal 120: 808–818, 1990a

    PubMed  CAS  Google Scholar 

  • Babbitt DG, Virmani R, Vildibill HD, Forman MB. Prevention of the no-reflow phenomenon reduces myocardial reperfusion injury after prolonged ischemia. Abstract 1140. Circulation 82 (Suppl. 3): III–287, 1990b

    Google Scholar 

  • Bauman JL. Understanding and treating supraventricular arrhythmias. Clinical Pharmacy 2: 312–320, 1983

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Giles W, West A. Ionic mechanism of adenosine actions in pacemaker cells from rabbit heart. Journal of Physiology 405: 615–633, 1988

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Isenberg G. Isolated atrial myocytes: adenosine and acetylcholine increase conductance. American Journal of Physiology 244: H734–H737, 1983

    PubMed  CAS  Google Scholar 

  • Belardinelli L, Linden J, Berne RM. The cardiac effects of adenosine. Progress in Cardiovascular Diseases 32: 73–97, 1989

    PubMed  CAS  Google Scholar 

  • Belhassen B, Glick A, Laniado S. Comparative clinical and electrophysiologic effects on adenosine triphosphate and verapamil on paroxysmal reciprocating junctional tachycardia. Circulation 77: 795–805, 1988

    PubMed  CAS  Google Scholar 

  • Belhassen B, Pelleg A. Acute management of paroxysmal supraventricular tachycardia: verapamil, adenosine triphosphate or adenosine? American Journal of Cardiology 54: 225–227, 1984a

    PubMed  CAS  Google Scholar 

  • Belhassen B, Pelleg A. Electrophysiologic effects of adenosine triphosphate and adenosine on the mammalian heart: clinical and experimental aspects. Journal of the American College of Cardiology 4: 414–424, 1984b

    PubMed  CAS  Google Scholar 

  • Belhassen B, Pelleg A, Shoshani D, Laniado S. Atrial fibrillation induced by adenosine triphosphate. American Journal of Cardiology 53: 1405–1406, 1984

    PubMed  CAS  Google Scholar 

  • Beihassen B, Pelleg A, Shoshani D, Geva B, Laniado S. Electrophysiologic effects of adenosine-5′-triphosphate on atrioventricular reentrant tachycardia. Circulation 68: 827–833, 1983

    Google Scholar 

  • Belhassen B, Shoshani D, Laniado S. Unmasking of ventricular preexcitation by adenosine triphosphate: its usefulness in the assessment of the ajmaline test. American Heart Journal 118: 634–636, 1989

    PubMed  CAS  Google Scholar 

  • Biaggioni I, Olaffson B, Robertson RM, Hollister AS, Robertson D. Cardiovascular and respiratory effects of adenosine in conscious man. Evidence for chemoreceptor activation. Circulation Research 61: 779–786, 1987a

    CAS  Google Scholar 

  • Biaggioni I, Olafsson B, Robertson RM, Robertson D. Adenosine stimulates carotid body chemoreceptors in man. Abstract. Journal of the American College of Cardiology 9: 137A, 1987b

    Google Scholar 

  • Biaggioni I, Onrot J, Hollister AS, Robertson D. Cardiovascular effects of adenosine infusion in man and their modulation by dipyridamole. Life Scencies 39: 2229–2236, 1986

    CAS  Google Scholar 

  • Blumenthal MS, McCauley CS. Cardiac arrest during dipyridamole imaging. Chest 93: 1103–1104, 1988

    PubMed  CAS  Google Scholar 

  • Boiling SF, Bies LE, Bove EL, Gallagher KP. Augmenting intracellular adenosine improves myocardial recovery. Journal of Thoracic and Cardiovascular Surgery 99: 469–474, 1990

    Google Scholar 

  • Bush A, Busst CM, Clarke B, Barnes PJ. Effect of infused adenosine on cardiac output and systemic resistance in normal subjects. British Journal of Clinical Pharmacology 27: 165–171, 1989

    PubMed  CAS  Google Scholar 

  • Buxton AE, Marchlinski FE, Doherty JU, Flores B, Josephson ME. Hazards of intravenous verapamil for sustained ventricular tachycardia. American Journal of Cardiology 59: 1107–1110, 1987

    PubMed  CAS  Google Scholar 

  • Cairns CB, Niemann JT. IV adenosine for the emergency department management of PSVT: just a pharmacologic vagal maneuver? Abstract. Annals of Emergency Medicine 19: 957, 1990

    Google Scholar 

  • Clarke B, Conradson T-B, Dixon CMS, Barnes PJ. Reproducibility of heart rate changes following adenosine infusion in man. European Journal of Clinical Pharmacology 35: 309–311, 1988

    PubMed  CAS  Google Scholar 

  • Clarke B, Coupe M. Adenosine: cellular mechanisms, pathophysiological roles and clinical applications. International Journal of Cardiology 23: 1–10, 1989

    PubMed  CAS  Google Scholar 

  • Clemo HF, Belardinelli L. Effect of adenosine on atrioventricular conduction. I. Site and characterization of adenosine in the guinea pig atrioventricular node. Circulation Research 59: 427–436, 1986

    CAS  Google Scholar 

  • Coade SB, Pearson JD. Metabolism of adenine nucleotides in human blood. Circulation Research 65: 531–537, 1989

    PubMed  CAS  Google Scholar 

  • Collis MG. The vasodilator role of adenosine. Pharmacology and Therapeutics 41: 143–162, 1989

    PubMed  CAS  Google Scholar 

  • Conradson T-BG, Dixon CMS, Clarke B, Barnes PJ. Cardiovascular effects of infused adenosine in man: potentiation by dipyridamole. Acta Physiologica Scandinavica 129: 387–391, 1987

    PubMed  CAS  Google Scholar 

  • Coyne E, Vande Streek P, Belvedere D, Weiland F, Spaccavento L, et al. A prospective study comparing thallium-201 imaging after intravenous adenosine infusion and exercise testing in the diagnosis of coronary artery disease. Abstract 838. European Journal of Nuclear Medicine 16: S194, 1990

    Google Scholar 

  • Crea F, Pupita G, Galassi AR, El-Tamimi H, Kaski JG, et al. Adenosine and angina pectoris. British Heart Journal 61: 455, 1989

    Google Scholar 

  • Crea F, Pupita G, Galassi AR, El-Tamimi H, Kaski JC, et al. Role of adenosine in pathogenesis of anginal pain. Circulation 81: 164–172, 1990

    PubMed  CAS  Google Scholar 

  • Dancy M, Camm AJ, Ward D. Misdiagnosis of chronic recurrent ventricular tachycardia. Lancet 2: 320–323, 1985

    PubMed  CAS  Google Scholar 

  • DiMarco JP, Lerman BB, Haines DE. Effects of adenosine on antegrade conduction in patients with manifest and concealed pre-excitation. Abstract. Circulation 76: IV–67, 1987

    Google Scholar 

  • DiMarco JP, Lerman BB, Kabell G, Belardinelli L, Haines DE. Adenosine produces different effects on monophasic action potentials in human atrium and ventricle. Abstract. Journal of the American College of Cardiology 11: 227A, 1988

    Google Scholar 

  • DiMarco JP, Miles W, Akhtar M, Milstein S, Sharma AD, et al. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicentre trials. Annals of Internal Medicine 113: 104–110, 1990

    CAS  Google Scholar 

  • DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L. Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 68: 1254–1263, 1983

    PubMed  CAS  Google Scholar 

  • DiMarco JP, Sellers TD, Lerman BB, Greenberg ML, Berne RM, et al. Diagnostic and therapeutic use of adenosine in patients with supraventricular tachyarrhythmias. Journal of the American College of Cardiology 6: 417–425, 1985

    PubMed  CAS  Google Scholar 

  • Dobson Jr J. Reduction by adenosine of the isoproterenol induced increase in cyclic adenosine 3′, 5′-monophosphate formation and glycogen phosphorylase activity in rat heart muscle. Circulation Research 43: 785–792, 1978

    PubMed  CAS  Google Scholar 

  • Dobson Jr JG, Shea LG. Adenosine reduces catecholamine contractile responses in oxygenated and hypoxic atria. American Journal of Physiology, Heart and Circulatory Physiology 245H: H468–H474, 1983

    Google Scholar 

  • Dole WP, Yamada N, Bishop VS, Olsson RA. Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circulation Research 56: 517–524, 1985

    PubMed  CAS  Google Scholar 

  • Downing SE, Chen V. Dissociation of adenosine from metabolic regulation of coronary flow in the lamb. American Journal of Physiology 251: H40–H46, 1986

    PubMed  CAS  Google Scholar 

  • Eliseev VV, Krylova IB, Ovchinnikova AG, Evdokimova NR, Prokopenko VM, et al. Hemodynamic and metabolic effect of adenosine in experimental myocardial infarction. Kardiologiya 28: 103–106, 1988

    PubMed  CAS  Google Scholar 

  • Ellenbogen KA, Thames MD, DiMarco JP, Sheehan H, Lerman BB. Electrophysiological effects of adenosine in the transplanted human heart. Evidence of supersensitivity. Circulation 81: 821–828, 1990

    CAS  Google Scholar 

  • Ely SW, Mentzer Jr RM, Lasley RD, Lee BK, Berne RM. Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. Journal of Thoracic and Cardiovascular Surgery 90: 549–556, 1985

    PubMed  CAS  Google Scholar 

  • Fagbemi O, Parratt JR. Antiarrhythmic actions of adenosine in the early stages of experimental myocardial ischaemia. European Journal of Pharmacology 100: 243–244, 1984

    PubMed  CAS  Google Scholar 

  • Favale S, Di Biase M, Rizzo U, Belardinelli L, Rizzon P. Effect of adenosine and adenosine-5′-triphosphate on atrioventricular conduction in patients. Journal of the American College of Cardiology 5: 1212–1219, 1985

    PubMed  CAS  Google Scholar 

  • Fenton RA, Bruttig SP, Rubio R, Berne RM. Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. American Journal of Physiology 242: H797–H804, 1982

    PubMed  CAS  Google Scholar 

  • Forman MB, Puett DU, Virmani R. Endothelial and myocardial injury during ischemia and reperfusion: pathogenesis and therapeutic implications. Journal of the American College of Cardiology 13: 450–459, 1989

    PubMed  CAS  Google Scholar 

  • Friedman HZ, Goldberg SF, Hauser AM, O’Neill WW. Death with dipyridamole-thallium imaging. Correspondence. Annals of Internal Medicine 109: 990–991, 1988

    CAS  Google Scholar 

  • Garratt C, Antoniou A, Griffith M, Ward D, Camm J. The use of adenosine in sinus rhythm as a diagnostic test for latent preexcitation. Abstract. Journal of the American College of Cardiology 15: 173A, 1990

    Google Scholar 

  • Garratt C, Linker N, Griffith M, Ward D, Camm AJ. Comparison of adenosine and verapamil for termination of paroxysmal junctional tachycardia. American Journal of Cardiology 64: 1310–1316, 1989

    PubMed  CAS  Google Scholar 

  • Gewirtz H, Olsson RA, Broutigan DL, Brown PR, Most AS. Adenosine’s role in regulatory basal coronary arteriolar tone. American Journal of Physiology 250: H1030–H1036, 1986

    PubMed  CAS  Google Scholar 

  • Greco R, Musto B, Arienzo V, Alborino A, Garofalo S, et al. Treatment of paroxysmal supraventricular tachycardia in infancy with digitalis, adenosine-5′-triphosphate, and verapamil: a comparative study. Circulation 66: 504–508, 1982

    PubMed  CAS  Google Scholar 

  • Griffith MJ, Linker NJ, Garratt CJ, Ward DE, Camm AJ. Relative efficacy and safety of intravenous drugs for termination of sustained ventricular tachycardia. Lancet 336: 670–673, 1990

    PubMed  CAS  Google Scholar 

  • Griffith MJ, Linker NJ, Ward DE, Camm AJ. Adenosine in the diagnosis of broad complex tachycardia. Lancet 1: 672–675, 1988

    PubMed  CAS  Google Scholar 

  • Gupta NC, Esterbrooks DM, Shiue C, Mohiuddin S, Hilleman D, et al. Utility of adenosine PET (perfusion/metabolic) imaging in patients with acute myocardial infarction following thrombolytic therapy. Abstract 892. Radiology 177(P): 234–235, 1990a

    Google Scholar 

  • Gupta N, Mohiuddin S, Hilleman D, Esterbrooks D, Iskandrian A, et al. Comparative diagnostic efficacy of adenosine infusion (AI) and treadmill exercise (ET) SPECT thallium imaging for CAD detection. Abstract 108. Journal of Nuclear Medicine 31: 733, 1990b

    Google Scholar 

  • Gupta N, Mohiuddin S, Siffring PA, Esterbrooks D, Hilleman D, et al. Comparative efficacy of adenosine infusion and dipyridamole-Tl-201 imaging. Abstract 5. Journal of Nuclear Medicine 30: 730, 1989

    Google Scholar 

  • Hanley FL, Grattan MT, Stevens MB, Hoffman JIE. Role of adenosine in coronary autoregulation. American Journal of Physiology 250: H558–H566, 1986

    PubMed  CAS  Google Scholar 

  • Homeister JW, Hoff PT, Fletcher DD, Lucchesi BR. Combined adenosine and lidocaine administration limits myocardial reperfusion injury. Circulation 82: 595–608, 1990

    PubMed  CAS  Google Scholar 

  • Hood MA, Smith WM. Adenosine versus verapamil in acute reversion of paroxysmal atrial tachycardia. Abstract. Australian and New Zealand Journal of Medicine 18: 381, 1988

    Google Scholar 

  • Hori M, Inoue M, Kitakaze M, Koretsune Y, Iwai K, et al. Role of adenosine in hyperemic response to coronary blood flow in microembolization. American Journal of Physiology 250: H509–H518, 1986

    PubMed  CAS  Google Scholar 

  • Iskandrian AS, Heo J, Nguyen T, Lyons E, Paugh E. Left ventricular dilatation and pulmonary thallium uptake after singlephoton emission computer tomography using thallium-201 during adenosine-induced coronary hyperemia. American Journal of Cardiology 66: 807–811, 1990

    PubMed  CAS  Google Scholar 

  • Josephson ME, Buxton AE, Marchlinski FE. The tachyarrhythmias. In Braunwald et al. (Eds) Harrison’s Principles of Internal Medicine, 11th ed., Vol. 1, pp. 923–938, McGraw Hill, New York, 1987

    Google Scholar 

  • Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre F, et al. Equivalency of intravenous adenosine to intracoronary papaverine for determination of coronary flow velocity reserve in patients. Abstract 1192. Circulation 82 (Suppl. 3): III–300, 1990

    Google Scholar 

  • Klabunde RE. Dipyridamole inhibition of adenosine metabolism in human blood. European Journal of Pharmacology 93: 21–26, 1983

    PubMed  CAS  Google Scholar 

  • Knobb RM, Gidday JM, Ely SW, Rubio R, Berne RM. Effects of dipyridamole on myocardial adenosine and active hyperemia. American Journal of Physiology 247: H804–H810, 1984

    Google Scholar 

  • Kolassa N, Pfleger K, Rummel W. Specificity of adenosine uptake into the heart and inhibition by dipyridamole. European Journal of Pharmacology 9: 265–268, 1970

    PubMed  CAS  Google Scholar 

  • Komor K, Garas Zs. Adenosine triphosphate in paroxysmal tachycardia. Correspondence. Lancet 2: 93–94, 1955

    Google Scholar 

  • Kroll K, Feigl EO. Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. American Journal of Physiology 249: H1176–H1187, 1985

    PubMed  CAS  Google Scholar 

  • Kujacic V, Jablonskiene D, Emanuelsson H. Adenosine echocardiography — an alternative to the dynamic stress echocardiography. Abstract 762. Circulation 82 (Suppl. 3): III–192, 1990

    Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T. On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Archiv European Journal of Physiology (Berlin) 407: 264–274, 1986

    CAS  Google Scholar 

  • Kuttesch Jr JF, Nelson JA. Renal handling of 2t/-deoxyadenosine and adenosine in humans and mice. Cancer Chemotherapy and Pharmacology 8: 221–229, 1982

    PubMed  CAS  Google Scholar 

  • Kwai AH, Jacobson AF, Mclntyre KM, Williams WH, Tow DE. Persistent chest pain following oral dipyridamole for thallium 201 myocardial imaging. European Journal of Nuclear Medicine 16: 745–746, 1990

    PubMed  CAS  Google Scholar 

  • Ledingham S, Katayama O, Lachno D, Patel N, Yacoub M. Beneficial effect of adenosine during reperfusion following prolonged cardioplegic arrest. Cardiovascular Research 24: 247–253, 1990a

    PubMed  CAS  Google Scholar 

  • Ledingham SJM, Katayama O, Yacoub M. Adenosine enhances the efficacy of hypothermic cardioplegic arrest. Abstract. British Heart Journal 64: 89, 1990b

    Google Scholar 

  • Lerman BB, Belardinelli L, West GA, Berne RM, DiMarco JP. Adenosine-sensitive ventricular tachycardia: evidence suggesting cyclic AMP-mediated triggered activity. Circulation 74: 270–280, 1986

    PubMed  CAS  Google Scholar 

  • Lerman BB, Greenberg M, Overholt ED, Swerdlow CD, Smith RT, et al. Differential electrophysiologic properties of decrementai retrograde pathways in long RP tachycardia. Circulation 76: 21–31, 1987

    PubMed  CAS  Google Scholar 

  • Lerman BB, Wesley RC, Belardinelli L. Electrophysiologic effects of dipyridamole on atrioventricular nodal conduction and supraventricular tachycardia: role of endogenous adenosine. Circulation 80: 1536–1543, 1989

    PubMed  CAS  Google Scholar 

  • Lerman BB, Wesley Jr RC, DiMarco JP, Haines DE, Belardinelli L. Antiadrenergic effects of adenosine on His-Purkinje automaticity: evidence for accentuated antagonism. Journal of Clinical Investigation 82: 2127–2135, 1988

    PubMed  CAS  Google Scholar 

  • Lewen MK, Labovitz AJ, Kern MJ, Chaitman BR. Prolonged myocardial ischemia after intravenous dipyridamole thallium imaging. Chest 92: 1102–1104, 1987

    PubMed  CAS  Google Scholar 

  • Lohse MJ, Ukena D, Schwabe U. Demonstration of Ri type adenosine receptors in bovine myocardium by radioligand binding. Naunyn-Schmiedeberg’s Archives of Pharmacology 328: 310–316, 1985

    PubMed  CAS  Google Scholar 

  • Mahmarian JJ, Johnston DL, Boyce TM, Nishimura S, Verani MS. Detection of residual ischemia early after acute myocardial infarction using adenosine/thallium-201 single-photon emission computed tomography. Abstract 2074. Circulation 80 (Suppl. 2): II–521, 1989a

    Google Scholar 

  • Mahmarian JJ, Johnston DL, Verani MS. Assessment of coronary artery anatomy early after acute myocardial infarction with adenosine thallium-201 tomography. Abstract 1227. Circulation 80 (Suppl. 2): II–308, 1989b

    Google Scholar 

  • Maxwell DL, Fuller RW, Conradson T-B, Dixon CMS, Aber V, et al. Contrasting effects of two xanthines, theophylline and enprofylline on the cardio-respiratory stimulation of infused adenosine in man. Acta Physiologica Scandinavica 131: 459–465, 1987

    PubMed  CAS  Google Scholar 

  • Möser GH, Schrader J, Deussen A. Turnover of adenosine in plasma of human and dog blood. American Journal of Physiology 256: C799–C806, 1989

    PubMed  Google Scholar 

  • Munoz A, Leenhardt A, Sassine A, Galley P, Puech P. Therapeutic use of adenosine for terminating spontaneous paroxysmal supraventricular tachycardia. European Heart Journal 5: 735–738, 1984

    PubMed  CAS  Google Scholar 

  • Munoz A, Leenhardt A, Sassine A, Puech P. Atropine antagonizes the effect of adenosine on atrioventricular conduction in closed chest dogs. Abstract. Circulation 72: III–241, 1985

    Google Scholar 

  • Murakami H, Kim S-J, Lee SC, Strete D, Downey HF. Adenosine exacerbates ischemic myocardial injury during regional coronary hypoxemia in the dog. Japanese Heart Journal 54: 365–383, 1990

    Google Scholar 

  • Nguyen T, Heo J, Ogilby JD, Iskandrian AS. Single photon emission computed tomography with thallium-201 during adenosine-induced coronary hyperemia: correlation with coronary arteriography, exercise thallium imaging and two-dimensional echocardiography. Journal of the American College of Cardiology 16: 1375–1383, 1990

    PubMed  CAS  Google Scholar 

  • Nishimura S, Mahmarian JJ, Verani MS. Adenosine thallium-201 tomography: diagnostic accuracy in coronary artery disease. Abstract 2907. Circulation 82 (Suppl. 3): III–731, 1990

    Google Scholar 

  • Norton ED, Jackson EK, Virmani R, Forman MB. Intravenous adenosine limits myocardial reperfusion injury in a model with low myocardial blood flow. Abstract. Circulation 80 (Suppl.): II–238, 1989

    Google Scholar 

  • Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, et al. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76: 1135–1145, 1987

    PubMed  CAS  Google Scholar 

  • Overholt ED, Rheuban KS, Gutgesell HP, Lerman BB, DiMarco JP. Usefulness of adenosine for arrhythmias in infants and children. American Journal of Cardiology 61: 336–340, 1988

    PubMed  CAS  Google Scholar 

  • Öwall A, Gordon E, Lagerkranser M, Lindquist C, Rudehill A, et al. Clinical experience with adenosine for controlled hypotension during cerebral aneurysm surgery. Anesthesia and Analgesia 66: 229–234, 1987

    PubMed  Google Scholar 

  • Öwall A, Järnberg P-O, Brodin L-Å, Sollevi A. Effects of adenosine-induced hypotension on myocardial hemodynamics and metabolism in fentanyl anesthetized patients with peripheral vascular disease. Anesthesiology 68: 416–421, 1988a

    PubMed  Google Scholar 

  • Öwall A, Lagerkranser M, Sollevi A. Effects of adenosine-induced hypotension on myocardial hemodynamics and metabolism during cerebral aneurysm surgery. Anesthesia and Analgesia 67: 228–232, 1988b

    PubMed  Google Scholar 

  • Parker RB, McCollam PL. Adenosine in the episodic treatment of paroxysmal supraventricular tachycardia. Clinical Pharmacy 9: 261–271, 1990

    PubMed  CAS  Google Scholar 

  • Pelleg A, Porter RS. The pharmacology of adenosine. Pharmacotherapy 10: 157–174, 1990

    PubMed  CAS  Google Scholar 

  • Perrot B, Clozel JP, Faivre G. Effect of adenosine triphosphate on the accessory pathways. European Heart Journal 5: 382–393, 1984

    PubMed  CAS  Google Scholar 

  • Pitarys CJ, Jackson EK, Virmani R, Forman MB. Permanent attenuation of myocardial reperfusion injury by intravenous adenosine. Abstract 1045. Circulation 82 (Suppl. 3): III–263, 1990

    Google Scholar 

  • Pitarys CJ, Virmani R, Vildibill HD, Jackson EK, Forman MB. Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation, in press, 1991

  • Pitt B. Vasodilator myocardial imaging. Circulation 82: 308–309, 1990

    PubMed  CAS  Google Scholar 

  • Platia EV, O’Donoghue S, Fabrizio G, Bak K, Waclawski S. Adenosine vs verapamil in SVT associated with an accessory AV pathway: a randomized double-blind study. Abstract. Chest 98 (Suppl.): 4S, 1990

    Google Scholar 

  • Polosa R, Church MK, Holgate ST. The mode of action of airway responses to adenosine in asthma. Immunology and Allergy Clinics of North America 10: 363–372, 1990

    Google Scholar 

  • Porter RS. Adenosine: supplementary considerations about activity and use. Clinical Pharmacy 9: 271–279, 1990

    PubMed  CAS  Google Scholar 

  • Radford D. Side effects of verapamil in infants. Archives of Disease in Childhood 58: 465–466, 1983

    PubMed  CAS  Google Scholar 

  • Rankin AC, Oldroyd KG. Chong E, Dow JW, Rae AP, et al. Adenosine or adenosine triphosphate for supraventricular tachycardias? Comparative double-blind randomized study in patients with spontaneous or inducible arrhythmias. American Heart Journal 119: 316–323, 1990a

    PubMed  CAS  Google Scholar 

  • Rankin AC, Oldroyd KG, Chong E, Rae AP, Cobbe SM. Value and limitations of adenosine in the diagnosis and treatment of narrow and broad complex tachycardias. British Heart Journal 62: 195–203, 1989

    PubMed  CAS  Google Scholar 

  • Rankin AC, Rae AP, Cobbe SM. Misuse of intravenous verapamil in patients with ventricular tachycardia. Lancet 2: 472–474, 1987

    PubMed  CAS  Google Scholar 

  • Rankin AC, Rae AP, Oldroyd KG, Cobbe SM. Verapamil or adenosine for the immediate treatment of supraventricular tachycardia. Quarterly Journal of Medicine, New Series 74: 203–208, 1990b

    CAS  Google Scholar 

  • Reid PG, Fraser AG, Watt AH, Henderson AH, Routledge PA. Acute haemodynamic effects of intravenous infusion of adenosine in conscious man. European Heart Journal 11: 1018–1028, 1990

    PubMed  CAS  Google Scholar 

  • Reid PG, Watt AH, Routledge PA, Smith AP. Intravenous infusion of adenosine but not inosine stimulates respiration in man. British Journal of Clinical Pharmacology 23: 331–338, 1987

    PubMed  CAS  Google Scholar 

  • Rinne C, Sharma AD, Klein GJ, Yee R, Szabo T. Comparative effects of adenosine triphosphate on accessory pathway and atrioventricular nodal conduction. American Heart Journal 115: 1042–1047, 1988

    PubMed  CAS  Google Scholar 

  • Ronca-Testoni S, Borghini F. Degradation of perfused adenine compounds up to uric acid in isolated rat heart. Journal of Molecular and Cellular Cardiology 14: 177–180, 1982

    PubMed  CAS  Google Scholar 

  • Rossen JD, Stenberg RG, Lopez JPG, Talman CL, Winniford MD. Coronary dilation with intravenous dipyridamole and adenosine: a comparative study. Abstract 2906. Circulation 82 (Suppl. 3): III–731, 1990

    Google Scholar 

  • Saito D, Ueeda M, Abe Y, Tani H, Nakatsu T, et al. Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate. British Heart Journal 55: 291–294, 1986

    PubMed  CAS  Google Scholar 

  • Schrader BJ, Intar S, Kaufmann E, Rich S. Vasodilatory response predicted by intravenous adenosine in primary pulmonary hypertension. Abstract 92. Circulation 82 (Suppl. 3): III–23, 1990

    Google Scholar 

  • Schrader J, Berne RM, Rubio R. Uptake and metabolism of adenosine by human erythrocyte ghosts. American Journal of Physiology 223: 159–166, 1972

    PubMed  CAS  Google Scholar 

  • Sellers TD, Kirchhoffer JB, Modesto TA. Adenosine: a clinical experience and comparison with verapamil for the termination of supraventricular tachycardias. In Pelleg A. et al. (Eds) Cardiac electrophysiology and pharmacology of adenosine and ATP: basic and clinical aspects, pp. 283–299, Alan R. Liss, Inc., New York, 1987

    Google Scholar 

  • Sharma AD, Klein GJ. Comparative quantitative electrophysiologic effects of adenosine triphosphate on the sinus node and atrioventricular node. American Journal of Cardiology 61: 330–335, 1988

    PubMed  CAS  Google Scholar 

  • Sharma AD, Klein GJ, Yee R. Intravenous adenosine triphosphat during wide QRS complex tachycardia: safety, therapeutic efficacy, and diagnostic utility. American Journal of Medicine 88: 337–343, 1990

    PubMed  CAS  Google Scholar 

  • Siffring PA, Gupta NC, Mohiuddin SM, Esterbrooks DJ, Hilleman DE, et al. Myocardial uptake and clearance of T1-201 in healthy subjects: comparison of adenosine-induced hyperemia and exercise stress. Radiology 173: 769–774, 1989

    PubMed  CAS  Google Scholar 

  • Singh BN, Nademanee K, Baky SH. Calcium antagonists: clinical use in the treatment of arrhythmias. Drugs 25: 125–153, 1983

    PubMed  CAS  Google Scholar 

  • Sollevi A. Cardiovascular effects of adenosine in man; possible clinical implications. Progress in Neurobiology 27: 319–349, 1986

    PubMed  CAS  Google Scholar 

  • Sollevi A, Torsell L, Fredholm BB, Settergren G, Blombäck M. Adenosine spares platelets during cardiopulmonary bypass in man without causing systemic vasodilation. Scandinavian Journal of Thoracic and Cardiovascular Surgery 19: 155–159, 1985

    PubMed  CAS  Google Scholar 

  • Somló E. Adenosine triphosphate in paroxysmal tachycardia. Correspondence. Lancet 1: 1125, 1955

    Google Scholar 

  • Sparks HV, De Witt DF, Wangler RD, et al. Capillary transport of adenosine. Federation Proceedings 44: 2620–2622, 1985

    PubMed  CAS  Google Scholar 

  • Sreeram N, Wren C. Supraventricular tachycardia in infants: response to initial treatment. Archives of Disease in Childhood 65: 127–129, 1990

    PubMed  CAS  Google Scholar 

  • Stewart RB, Bardy GH, Greene HL. Wide complex tachyardia: misdiagnosis and outcome after emergency therapy. Annals of Internal Medicine 194: 766–77rl, 1986

    Google Scholar 

  • Sylvén C, Beermann B, Edlund A, Lewander R, Jonzon B, et al. Provocation of chest pain in patients with coronary insufficiency using the vasodilator adenosine. European Heart Journal 9 (Suppl. N): 6–10, 1988b

    PubMed  Google Scholar 

  • Sylvén C, Beermann B, Jonzon B, Brandt R. Angina pectoris-like pain provoked by intravenous adenosine in healthy volunteers. British Medical Journal 293: 227–230, 1986a

    PubMed  Google Scholar 

  • Sylvén C, Beermann B, Lagerquist B, Waldenström A. Angina pectoris, adenosine, and theophylline. Lancet 1: 1328–1329, 1989a

    Google Scholar 

  • Sylvén C, Borg G, Brandt R, Beermann B, Jonzon B. Dose-effect relationship of adenosine provoked angina pectoris-like pain — a study of the psychophysical power function. European Heart Journal 9: 87–91, 1988a

    PubMed  Google Scholar 

  • Sylvén C, Edlund A, Brandt R, Baermann B, Jonzon B. Angina pectoris-like pains provoked by intravenous adenosine. Correspondence. British Medical Journal 293: 1027–1028, 1986b

    Google Scholar 

  • Sylvén C, Jonzon B, Edlund A. Angina pectoris-like pain provoked by i.v. bolus of adenosine: relationship to coronary sinus blood flow, heart rate and blood pressure in healthy volun- teers. European Heart Journal 10: 48–54, 1989b

    PubMed  Google Scholar 

  • Tadokoro H, Kobayashi S, Corday E. Profound infarct size reduction with retrograde coronary venous administration of adenosine. Abstract 1139. Circulation 82 (Suppl. 3): III–287, 1990

    Google Scholar 

  • Tajima T, Muramatsu T, Kanaka S, Yanagishita Y, Ide M, et al. Intravenous adenosine triphosphate disodium: its efficacy and electrophysiologic effects on patients with paroxysmal supraventricular tachycardias. PACE 9: 401–410, 1986

    PubMed  CAS  Google Scholar 

  • Taviot B, Pacheco Y, Coppere B, Pirollet B, Rebaudet P, et al. Bronchospame induit par l’injection d’adénosine chez un athmatique. Presse Médicale 15: 1103, 1986

    CAS  Google Scholar 

  • Thornton JD, Van Winkle DM, Downey JM. Preconditioning protection is mediated through adenosine receptors. Abstract 1842. Circulation 82 (Suppl. 3): III–464, 1990

    Google Scholar 

  • Till J, Shinebourne EA, Rigby ML, Clarke B, Ward DE, et al. Efficacy and safety of adenosine in the treatment of supraventricular tachycardia in infants and children. British Heart Journal 62: 204–211, 1989

    PubMed  CAS  Google Scholar 

  • Torssell L, Sollevi A, Öhqvist G, Ekeström S. Adenosine-induced coronary vasodilation during coronary bypass surgery. Anesthesiology 63: A34, 1985

    Google Scholar 

  • Trakhtenbroit AD, Cheirif J, Kleiman NS, Verani MS, Mahmarian JJ, et al. Intravenous adenosine echocardiography, a new pharmacologic stress test: preliminary results and comparison with simultaneous thallium scintigraphy. Abstract. Journal of the American College of Cardiology 15: 234A, 1990a

    Google Scholar 

  • Trakhtenbroit AD, Cheirif J, Kleiman N, Verani MS, Zoghbi WA. Adenosine echocardiography in the diagnosis of coronary artery disease: comparison with coronary angiography. Abstract 763. Circulation 82 (Suppl. 3): III–193, 1990b

    Google Scholar 

  • Velasco CE, Babbitt DG, Virmani R, Vildibill HD, Turner MB, et al. Differential time course of ischemic and reperfusion injury in the closed chest canine model. Abstract 1141. Circulation 82 (Suppl. 3): III–287, 1990a

    Google Scholar 

  • Velasco CE, Turner MB, Pitarys CJ, Crawford JJ, Virmani R, et al. Limitation of reperfusion injury after 40 minutes of regional ischemia in a closed chest canine model with intracoronary adenosine. Abstract. Journal of the American College of Cardiology 15: 88A, 1990b

    Google Scholar 

  • Verani MS. Pharmacologie coronary vasodilation as an adjunct to myocardial perfusion imaging. Abstract. Advances in Nuclear Cardiovascular Imaging Meeting of the Society of Nuclear Medicine, Washington DC, USA, June 18, 1990

    Google Scholar 

  • Verani MS, Mahmarian JJ, Hixson JB, Boyce TM, Staudacher RA. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 82: 80–87, 1990a

    PubMed  CAS  Google Scholar 

  • Verani MS, Nishimura S, Mahmarian JJ, Weiland F, Adenosine/ Exercise Multicenter Trial Investigators. Comparison between adenosine infusion and exercise thallium-201 tomography: a multicenter, crossover trial. Abstract 66. Journal of Nuclear Medicine 31: 722, 1990b

    Google Scholar 

  • Visentin S, Wu S-N, Belardinelli L. Effect of adenosine on potassium and calcium currents in guinea pig atrial myocytes. Abstract. Pharmacologist 30: A179, 1988

    Google Scholar 

  • Viskin S, Belhassen B. Acute management of paroxysmal atrio-ventricular junctional reentrant supraventricular tachycardia: pharmacologic strategies. American Heart Journal 120: 180–188, 1990

    PubMed  CAS  Google Scholar 

  • Watt AH, Bayer A, Routledge PA, Swift CG. Adenosine-induced respiratory and heart rate changes in young and elderly adults. British Journal of Clinical Pharmacology 27: 265–267, 1989

    PubMed  CAS  Google Scholar 

  • Watt AH, Bernard MS, Webster J, Passani SL, Stephens MR, et al. Intravenous adenosine in the treatment of supraventricular tachycardia: a dose-ranging study and interaction with dipyridamole. British Journal of Clinical Pharmacology 21: 227–230, 1986a

    PubMed  CAS  Google Scholar 

  • Watt AH, Penny WJ, Singh H, Routledge PA, Henderson AH. Adenosine causes transient dilatation of coronary arteries in man. British Journal of Clinical Pharmacology 24: 665–668, 1987

    PubMed  CAS  Google Scholar 

  • Watt AH, Reid PG, Routledge P, Singh H, Penny WJ, et al. Angina pectoris-like pains provoked by intravenous adenosine. British Medical Journal 293: 504–505, 1986b

    Google Scholar 

  • Watt AH, Routledge PA. Adenosine stimulates respiration in man. British Journal of Clinical Pharmacology 20: 503–506, 1985

    PubMed  CAS  Google Scholar 

  • Watt AH, Routledge PA. Transient bradycardia and subsequent sinus tachycardia produced by intravenous adenosine in healthy adult subjects. British Journal of Clinical Pharmacology 21: 533–536, 1986

    PubMed  CAS  Google Scholar 

  • West GA, Belardinelli L. Correlation of sinus slowing and hyperpolarization caused by adenosine in sinus node. Pflügers Archiv European Journal of Physiology (Berlin) 403: 75–81, 1985a

    CAS  Google Scholar 

  • West GA, Belardinelli L. Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pflügers Archiv European Journal of Physiology (Berlin) 403: 66–74, 1985b

    CAS  Google Scholar 

  • Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD. Effects of adenosine on human coronary arterial circulation. Circulation 82: 1595–1606, 1990

    PubMed  CAS  Google Scholar 

  • Wu D, Denes P, Amat-Y-Leon F, Dhingra R, Wyndham CRC, et al. Clinical, electrocardiographic and electrophysiologic observations in patients with paroxysmal supraventricular tachycardia. American Journal of Cardiology 41: 1045–1051, 1978

    PubMed  CAS  Google Scholar 

  • Yatani A, Mattera R, Codina J, Graf R, Okabe K, et al. The G protein-gated atrial K+-channel is stimulated by three distinct G-subunits. Nature 336: 680–682, 1988

    PubMed  CAS  Google Scholar 

  • Ziffer JA, Galt J, Halkar R, MacClendon C, Tarcan Y, et al. Adenosine-SPECT thallium scintigraphy: comparison with exercise and clinical experience. Abstract 58. Radiology 177(P): 98, 1990

    Google Scholar 

  • Zijlstra F, Juillière Y, Serruys PW, Roelandt JRTC. Value and limitations of intracoronary adenosine for the assessment of coronary flow reserve. Catheterization and Cardiovascular Diagnosis 15: 76–80, 1988

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Various sections of the manuscript reviewed by: L. Belardinelli, Department of Medicine, University of Florida, Gainesville, Florida, USA; B. Beihassen, Tel Aviv-Elias Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Ichilov Hospital, Tel Aviv, Israel; J.P. DiMarco, Clinical Electrophysiology Laboratory, Division of Cardiology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA; M.B. Forman, Division of Cardiology, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA; M. Griffith, Freeman Hospital, High Heaton, Newcastle Upon Tyne, England; M. Hood, Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine at Washington University Medical Center, St Louis, Missouri, USA; A.S Iskandrian, Philadelphia Heart Institute, Presbyterian Medical Center, Philadelphia, Pennsylvania, USA; H. Murakami, Second Department of Internal Medicine, Sapporo Medical College, Chuo-ku, Sapporo, Japan; A.S. Nies, Division of Clinical Pharmacology and Toxicology, University of Colorado Health Sciences Center, Denver, Colorado, USA; A.C. Rankin, Department of Medical Cardiology, Royal Infirmary, Glasgow, Scotland; P.G. Reid, Department of Pharmacology and Therapeutics, University of Wales College of Medicine, Cardiff, Wales; P.A. Routledge, Department of Pharmacology and Therapeutics, University of Wales College of Medicine, Cardiff, Wales; D. Saito, Department of Laboratory Medicine, Okayama University Medical School, Okayama, Japan; W.M. Smith, Cardiology Unit, Greenlane Hospital, Greenlane, Auckland, New Zealand; M.S. Verani, Section of Cardiology, Department of Internal Medicine, Baylor College of Medicine, Houston, Texas, USA; A.H. Watt, Department of Pharmacology and Therapeutics, University of Wales College of Medicine, Cardiff, Wales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faulds, D., Chrisp, P. & Buckley, M.M.T. Adenosine. Drugs 41, 596–624 (1991). https://doi.org/10.2165/00003495-199141040-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199141040-00007

Keywords

Navigation