Skip to main content
Log in

Sequential Updating of a New Dynamic Pharmacokinetic Model for Caffeine in Premature Neonates

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objective: Caffeine treatment is widely used in nursing care to reduce the risk of apnoea in premature neonates. To check the therapeutic efficacy of the treatment against apnoea, caffeine concentration in blood is an important indicator. The present study was aimed at building a pharmacokinetic model as a basis for a medical decision support tool.

Methods: In the proposed model, time dependence of physiological parameters is introduced to describe rapid growth of neonates. To take into account the large variability in the population, the pharmacokinetic model is embedded in a population structure. The whole model is inferred within a Bayesian framework. To update caffeine concentration predictions as data of an incoming patient are collected, we propose a fast method that can be used in a medical context. This involves the sequential updating of model parameters (at individual and population levels) via a stochastic particle algorithm.

Results: Our model provides better predictions than the ones obtained with models previously published. We show, through an example, that sequential updating improves predictions of caffeine concentration in blood (reduce bias and length of credibility intervals). The update of the pharmacokinetic model using body mass and caffeine concentration data is studied. It shows how informative caffeine concentration data are in contrast to body mass data.

Conclusion: This study provides the methodological basis to predict caffeine concentration in blood, after a given treatment if data are collected on the treated neonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Fig. 4
Table III
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Daily WJ, Klaus M, Meyer HB. Apnea in premature infants: monitoring, incidence, heart rate changes, and an effect of environmental temperature. Pediatrics 1969; 43(4): 510–8

    PubMed  CAS  Google Scholar 

  2. Aranda JV, Turmen T, Davis J, et al. Effect of caffeine on control of breathing in infantile apnea. J Pediatr 1983; 103(6): 975–8

    Article  PubMed  CAS  Google Scholar 

  3. Aranda JV, Gorman W, Bergsteinsson H, et al. Efficacy of caffeine in treatment of apnea in the low-birth-weight infant. J Pediatr 1977; 90(3): 467–72

    Article  PubMed  CAS  Google Scholar 

  4. Aranda JV, Grondin D, Sasyniuk BI. Pharmacologic considerations in the therapy of neonatal apnea. Pediatr Clin North Am 1981; 28(1): 113–33

    PubMed  CAS  Google Scholar 

  5. Zanardo V, Dani C, Trevisanuto D, et al. Methylxanthines increase renal calcium excretion in preterm infants. Biol Neonate 1995; 68(3): 169–74

    Article  PubMed  CAS  Google Scholar 

  6. Gillot I, Gouyon JB, Guignard JP. Renal effects of caffeine in preterm infants. Biol Neonate 1990; 58: 133–6

    Article  PubMed  CAS  Google Scholar 

  7. D’Urzo AD, Jhirad R, Jenne H, et al. Effect of caffeine on ventilatory responses to hypercapnia, hypoxia, and exercice in humans. J Appl Physiol 1990; 68(1): 322–8

    PubMed  Google Scholar 

  8. Aranda JV, Clozel M. Pharmacologic effects of caffeine and theophylline in the premature infant. Dev Pharmacol Ther 1982; 4 Suppl.: 165–72

    PubMed  Google Scholar 

  9. Karacan I, Thornby JI, Anch M, et al. Dose-related sleep disturbances induced by coffee and caffeine. Clin Pharmacol Ther 1976; 20(6): 682–9

    PubMed  CAS  Google Scholar 

  10. Henderson-Smart DJ, Steer P. Methylxanthine treatment for apnea in preterm infants. Cochrane Database Syst Rev 2000; (2): CD000140

    PubMed  Google Scholar 

  11. Bhatt-Mehta V, Schumacher RE. Treatment of apnea of prematurity. Paediatr Drugs 2003; 5(3): 195–210

    PubMed  Google Scholar 

  12. Thomson AH, Kerr S, Wright S. Population pharmacokinetics of caffeine in neonates and young infants. Ther Drug Monit 1996; 18(3): 245–53

    Article  PubMed  CAS  Google Scholar 

  13. Lee TC, Charles B, Steer P, et al. Population pharmacokinetics of intravenous caffeine in neonates with apnea of prematurity. Clin Pharmacol Ther 1997; 61(6): 628–40

    Article  PubMed  CAS  Google Scholar 

  14. Falcao AC, Fernandez de Gatta MM, Delgado Iribarnegaray MF, et al. Population pharmacokinetics of caffeine in premature neonates. Eur J Clin Pharmacol 1997; 52(3): 211–7

    Article  PubMed  CAS  Google Scholar 

  15. Box GEP, Tiao G. Bayesian inference in statistical analysis. New York: John Wiley and Sons, 1973

    Google Scholar 

  16. Gelman A, Carlin JB, Stern HS, et al. Bayesian data analysis. London: Chapman & Hall, 1995

    Google Scholar 

  17. Bernardo JM, Smith AFM. Bayesian theory. New York: Wiley, 1994

    Book  Google Scholar 

  18. Amzal B, Bois FY, Parent E, et al. Bayesian optimal design via interacting particle systems. J Am Stat Assoc 2006; 101(474): 773–85

    Article  CAS  Google Scholar 

  19. Warszawski D, Gorodischer R. Tissue distribution of caffeine in premature infants and in newborn and adult dogs. Pediatr Pharmacol (New York) 1981; 1(4): 341–6

    CAS  Google Scholar 

  20. International Commission on Radiological Protection (ICRP). Basic anatomical and physiological data for use in radiological protection: reference values. Stockholm: Pergamon, 2002

    Google Scholar 

  21. Pons G, Carrier O, Richard M-O, et al. Developmental changes of caffeine elimination in infancy. Dev Pharmacol Ther 1988; 11: 258–64

    PubMed  CAS  Google Scholar 

  22. Carrier O, Pons G, Rey E, et al. Maturation of caffeine metabolic pathways in infancy. Clin Pharmacol Ther 1988; 44(2): 145–51

    Article  PubMed  CAS  Google Scholar 

  23. Bourgoin H, Paintaud G, Buchler M, et al. Bayesian estimation of cyclosporin exposure for routine therapeutic drug monitoring in kidney transplant patients. Br J Clin Pharmacol 2005; 59(1): 18–27

    Article  PubMed  Google Scholar 

  24. Sandstrom M, Karlsson MO, Ljungman P, et al. Population pharmacokinetic analysis resulting in a tool for dose individualization of busulphan in bone marrow transplantation recipients. Bone Marrow Transplant 2001; 28(7): 657–64

    Article  PubMed  CAS  Google Scholar 

  25. Taright N, Mentre F, Mallet A, et al. Nonparametric estimation of population characteristics of the kinetics of lithium from observational and experimental data: individualization of chronic dosing regimen using a new Bayesian approach. Ther Drug Monit 1994; 16(3): 258–69

    Article  PubMed  CAS  Google Scholar 

  26. Arnaud M. Metabolism of caffeine and other components of coffee. In: Garattini S, editor. Caffeine, coffee and health. New York: Raven Press, 1993: 43–93

    Google Scholar 

  27. Aranda JV, Collinge JM, Zinman R, et al. Maturation of caffeine elimination in infancy. Arch Dis Child 1979; 54(12): 946–9

    Article  PubMed  CAS  Google Scholar 

  28. Le Guennec JC, Billon B, Pare C. Maturational changes of caffeine concentrations and disposition in infancy during maintenance therapy for apnea of prematurity: influence of gestational age, hepatic disease, and breast-feeding. Pediatrics 1985; 76(5): 834–40

    PubMed  Google Scholar 

  29. Beal SL, Sheiner LB. Estimating population kinetics. Crit Rev Biomed Eng 1982; 8(3): 195–222

    PubMed  CAS  Google Scholar 

  30. Racine-Poon A, Smith AF. Population models. In: Berry DA, editor. Statistical methodology in the pharmaceutical sciences. New York: Marcel Dekker Inc, 1990: 139–162

    Google Scholar 

  31. Garthwaite PH, Kadane JB, O’Hagan A. Statistical methods for eliciting probability distributions. J Am Stat Assoc 2005; 100(470): 680–700

    Article  CAS  Google Scholar 

  32. Kadane JB, Wolfson LJ. Experiences in elicitation. J R Stat Soc Series D (The Statistician) 1998; 47(1): 3–19

    Article  Google Scholar 

  33. Chen MH, Ibrahim JG, Shao QM, et al. Prior elicitation for model selection and estimation in generalized linear mixed models. J Stat Plan Inference 2003; 111(1-2): 57–76

    Article  Google Scholar 

  34. Arnaud M, Weitzholtz H, Voegelin M, Bircher J, Presig R. Assessment of the cytochrome P-448 dependent liver enzyme system by caffeine breath test. In: Sato R, editor. Microsomes drug oxydation and drug toxicity. New York: Wiley Interscience, 1982: 443–4

    Google Scholar 

  35. Stone M. Cross-validation choice and assessment of statistical predictions. J R Stat Soc B 1974; 36: 111–47

    Google Scholar 

  36. Gelfand AE, Dey DK, Chang H. Model determination using predictive distributions with implementation via sampling-based methods. In: Bernardo JM, Berger JO, Dawid AP, et al., editors. Bayesian statistics 4. Oxford: Oxford University Press, 1992: 147–67

    Google Scholar 

  37. Robert C. Méthodes de Monte Carlo par chaînes de Markov. Paris: Economica, 1996

    Google Scholar 

  38. Gilks WR, Richardson S, Spiegelhalter DJ. Markov chain Monte Carlo in practice. London: Chapman & Hall, 1996

    Google Scholar 

  39. Bois FY, Maszle D. MCSim: a simulation program. Journal of Statistical Software 1997; 2 (9) [online]. Available from URL: http://toxi.ineris.fr/activites/toxicologie_quantitative/mcsim/mcsim.php [Accessed 2006 Nov 27]

  40. Chopin N. A sequential particle filter method for static models. Biometrika 2002; 89: 539–52

    Article  Google Scholar 

  41. Tierney L, Mira A. Some adaptive Monte Carlo methods for Bayesian inference. Stat Med 1999; 18: 2507–15

    Article  PubMed  CAS  Google Scholar 

  42. Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 2000; 10(3): 197–208

    Article  Google Scholar 

  43. Doucet A, De Freias J, Gordon N. Sequential Monte Carlo methods in practice. New York: Springer-Verlag, 2001

    Google Scholar 

  44. Ridgeway G, Madigan D. A sequential Monte Carlo method for Bayesian analysis of massive datasets. Data Mining and Knowledge Discovery 2003; 7(3): 301–19

    Article  PubMed  Google Scholar 

  45. Bayard DS, Jelliffe RW. A Bayesian approach to tracking patients having changing pharmacokinetic parameters. J Pharmacokinet Pharmacodyn 2004; 31(1): 75–107

    Article  PubMed  Google Scholar 

  46. Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 1989; 24: 1317–99

    Article  Google Scholar 

  47. Rubin DB. Using the SIR algorithm to simulate posterior distributions. In: Bernardo JM, De Groot MH, Lindley DV, et al., editors. Bayesian statistics 3. Oxford: Oxford University Press, 1988: 395–402

    Google Scholar 

  48. Tierney L. Markov chains for exploring posterior distributions. Ann Stat 1994; 22(4): 1701–62

    Article  Google Scholar 

  49. Jelliffe R, Schumitzky A, Van Guilder M. Population pharmacokinetics/pharmacodynamics modeling: parametric and nonparametric methods. Ther Drug Monit 2000; 22(3): 354–65

    Article  PubMed  CAS  Google Scholar 

  50. Wakefield J, Walker S. Bayesian nonparametric population models: formulation and comparison with likelihood approaches. J Pharmacokinet Biopharm 1997; 25(2): 235–53

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr C. Diack for his helpful remarks and the reviewers for comments that improved the manuscript. Partial funding for this work was provided by the French Ministry of Research and Technology, project DIADEME, decision 02 C 0141. This work has also been supported by the research project BCRD-AP2001-DRC07 provided by the French Ministry of the Ecology and Sustainable Development and by the Regional Council of Picardie. The authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Micallef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Micallef, S., Amzal, B., Bach, V. et al. Sequential Updating of a New Dynamic Pharmacokinetic Model for Caffeine in Premature Neonates. Clin Pharmacokinet 46, 59–74 (2007). https://doi.org/10.2165/00003088-200746010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746010-00003

Keywords

Navigation