Skip to main content
Log in

Guidelines on Paediatric Dosing on the Basis of Developmental Physiology and Pharmacokinetic Considerations

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The approach to paediatric drug dosing needs to be based on the physiological characteristics of the child and the pharmacokinetic parameters of the drug. This review summarises the current knowledge on developmental changes in absorption, distribution, metabolism and excretion and combines this knowledge with in vivo and in vitro pharmacokinetic data that are currently available. In addition, dosage adjustments based on practical problems, such as child-friendly formulations and feeding regimens, disease state, genetic make-up and environmental influences are presented.

Modification of a dosage based on absorption, depends on the route of absorption, the physico chemical properties of the drug and the age of the child. For oral drug absorption, a distinction should be made between the very young and children over a few weeks old. In the latter case, it is likely that practical considerations, like appropriate formulations, have much greater relevance to oral drug absorption.

The volume of distribution (Vd) may be altered in children. Hydrophilic drugs with a high Vd in adults should be normalised to bodyweight in young children (age <2 years), whereas hydrophilic drugs with a low Vd in adults should be normalised to body surface area (BSA) in these children. For drugs that are metabolised by the liver, the effect of the Vd becomes apparent in children <2 months of age. In general, only the first dose should be based on the Vd subsequent doses should be determined by the clearance. Pharmacokinetic studies on renal and liver function clarify that a distinction should be made between maturation and growth of the organs. After the maturation process has finished, the main influences on the clearance of drugs are growth and changes in blood flow of the liver and kidney. Drugs that are primarily metabolised by the liver should be administered with extreme care until the age of 2 months. Modification of dosing should be based on response and on therapeutic drug monitoring. At the age of 2–6 months, a general guideline based on bodyweight may be used. After 6 months of age, BSA is a good marker as a basis for drug dosing. However, even at this age, drugs that are primarily metabolised by cytochrome P450 2D6 and uridine diphosphate glucuronosyltransferase should be normalised to bodyweight.

In the first 2 years of life, the renal excretion rate should be determined by markers of renal function, such as serum creatinine and p-aminohippuric acid clearance. A dosage guideline for drugs that are significantly excreted by the kidney should be based on the determination of renal function in first 2 years of life. After maturation, the dose should be normalised to BSA.

These guidelines are intended to be used in clinical practice and to form a basis for more research. The integration of these guidelines, and combining them with pharmacodynamic effects, should be considered and could form a basis for further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rodman JH. Pharmacokinetic variability in the adolescent: implications of body size and organ function for dosage regimen design. J Adolesc Health 1994; 15(8): 654–62

    Article  PubMed  CAS  Google Scholar 

  2. Crawford JD, Terry ME, Rourke GM. Simplification of drug dosage calculation by application of the surface area principle. Pediatrics 1950; 5(5): 783–90

    PubMed  CAS  Google Scholar 

  3. Meine Jansen CF, Toet MC, Rademaker CM, et al. Treatment of symptomatic congenital cytomegalovirus infection with valganciclovir. J Perinat Med 2005; 33(4): 364–6

    Google Scholar 

  4. Yaffe SJ, Aranda JV. Neonatal and pediatric pharmacology therapeutic principles in practice. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 2004

    Google Scholar 

  5. Holford HG. A size standard for pharmacokinetics. Clin Pharmacokinet 1996; 30(5): 329–32

    Article  PubMed  CAS  Google Scholar 

  6. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology-drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349: 1157–67

    Article  PubMed  CAS  Google Scholar 

  7. Moore P. Children are not small adults. Lancet 1998; 352(9128): 630

    Article  PubMed  CAS  Google Scholar 

  8. Ritschel WA, Kearns GL. Handbook of basis pharmacokinetics including clinical applications. 6th ed. Washington, DC: American Pharmaceutical Association, 2004: 227–240

    Google Scholar 

  9. Rennie JM, Roberten NRC. Textbook of neonatology. 3rd ed. Edinburgh: Churchill Livingstone, 1999

    Google Scholar 

  10. McLeod HL, Relling MV, Crom WR, et al. Disposition of antineoplastic agents in the very young child: pharmacokinetics in children. Br J Cancer Suppl 1992; 18: S23–9

    PubMed  CAS  Google Scholar 

  11. Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundam Clin Pharmacol 2003; 17: 281–99

    Article  Google Scholar 

  12. Kearns GL. Impact of developmental pharmacology on pediatric study desing; overcoming the challenges. J Allergy Clin Immunol 2000; 106: S128–39

    Article  PubMed  CAS  Google Scholar 

  13. Hunseler C, Roth B, Pothmann R, et al. Intramuscular injections in children [in German]. Schmerz 2005 Apr; 19(2): 140–3

    Article  PubMed  CAS  Google Scholar 

  14. Jatzen JP, Diehl P. Rectal administration of drugs: fundamentals and applications in anesthesia [in German]. Anaesthesist 1991; 40(5): 251–61

    Google Scholar 

  15. American Academy of Pediatrics Committee on Drugs. Alternative routes of drug administration: advantages and disadvantages. Pediatrics 1997; 100: 143–52

    Article  Google Scholar 

  16. Anderson BJ, van Lingen RA, Hansen TG, et al. Acetaminophen developmental pharmacokinetics in premature neonates and infants: a pooled population analysis. Anesthesiology 2002; 96(6): 1336–45

    Article  PubMed  CAS  Google Scholar 

  17. Kearns GL, Robinson PK, Wilson JT, et al. Pharmacokinetics and drug disposition cisapride disposition in neonates and infants: in vivo reflection of cytochrome P450 3A4 ontogeny. Clin Pharmacol Ther 2003; 4: 312–25

    Article  CAS  Google Scholar 

  18. Kearns GL, Bradley JS, Jacobs RF, et al. Single dose pharmacokinetics of pleconaril in neonates. Pediatr Infect Dis J 2000; 19(9): 833–9

    Article  PubMed  CAS  Google Scholar 

  19. de Wildt SN, Kearns GL, Hop WC, et al. Pharmacokinetics and metabolism of oral midazolam in preterm infants. Br J Clin Pharmacol 2002 Apr; 53(4): 390–2

    Article  PubMed  Google Scholar 

  20. Boucher FD, Modlin JF, Weiler S, et al. Phase I evaluation of zidovudine administered to infants exposed at birth to the human immunodeficiency virus. J Pediatr 1993; 122: 1137–44

    Google Scholar 

  21. Capparelli EV, Mirochnick M, Dankner WM, et al. Pharmacokinetics and tolerance of zidovudine in preterm infants. J Pediatr 2003; 142: 47–52

    Article  PubMed  CAS  Google Scholar 

  22. Albani M, Wernicke I. Oral phenytoin in infancy: dose requirement, absorption, and elimination. Pediatr Pharmacol (New York) 1983; 3(3–4): 229–36

    CAS  Google Scholar 

  23. de Repentigny L, Ratelle J, Leclerc JM, et al. Repeated-dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother 1998; 42(2): 404–8

    PubMed  Google Scholar 

  24. Abdel-Rahman SM, Johnson FK, Connor JD, et al. Developmental pharmacokinetics and pharmacodynamics of nizatidine. J Pediatr Gastroenterol Nutr 2004; 38(4): 442–51

    Article  PubMed  CAS  Google Scholar 

  25. Kokki H, Karvinen M, Suhonen P. Pharmacokinetics of intravenous and rectal ketoprofen in young children. Clin Pharmacokinet 2003; 42(4): 373–9

    Article  PubMed  CAS  Google Scholar 

  26. Ishizaki T, Sasaki T, Suganuma T. Pharmacokinetics of ketoprofen following single oral, intramuscular and rectal doses and after repeated oral administration. Eur J Clin Pharmacol 1980; 18(5): 407–14

    Article  PubMed  CAS  Google Scholar 

  27. van Lingen RA, Deinum JT, Quak JME, et al. Pharmacokinetics and metabolism of rectally administered paracetamol in preterm neonates. Arch Dis Child Fetal Neonatal Ed 1999; 80: F59–63

    Article  PubMed  Google Scholar 

  28. Zwaveling J, Bubbers S, van Meurs AH, et al. Pharmacokinetics of rectal tramadol in postoperative paediatric patients. Br J Anaesth 2004; 93(2): 224–7

    Article  PubMed  CAS  Google Scholar 

  29. Rudolph AM, Kamei RK, Overby K J. Rudolph’s fundamentals of pediatrics. 2nd ed. Stanford: Appleton & Lange, 1998: 400

    Google Scholar 

  30. Ginsberg G, Hattis D, Miller M, et al. Pediatrie pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics 2004; 113(4): 973–83

    PubMed  Google Scholar 

  31. Kimura T, Sunakawa K, Matsuura N, et al. Population pharmacokinetics of arbekacin, vancomycin, and panipenem in neonates. Antimicrob Agents Chemother 2004; 48(4): 1159–67

    Article  PubMed  CAS  Google Scholar 

  32. Bartels H. Drug therapy in childhood: what has been done and what has to be done? Pediatr Pharmacol (New York) 1983; 3: 131–43

    CAS  Google Scholar 

  33. Kearns GL, Jungbluthy GL, Abdel-Rahman SM, et al. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther 2003; 74(5): 413–22

    Article  PubMed  CAS  Google Scholar 

  34. Hayani KC, Hatzopoulos FK, Frank AL, et al. Pharmacokinetics of once-daily dosing of gentamicin in neonates. J Pediatr 1997; 131: 76–80

    Article  PubMed  CAS  Google Scholar 

  35. Watterberg KL, Kelly HW, Angelus P, et al. The need for a loading dose of gentamicin in neonates. Ther Drug Monit 1989; 11(1): 16–20

    Article  PubMed  CAS  Google Scholar 

  36. Allegaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 activity. Br J Anaesth 2005; 95(2): 231–9

    Article  PubMed  CAS  Google Scholar 

  37. Anderson GD. Children versus adults: pharmacokinetic and adverse-effect differences. Epilepsia 2002; 43: 53–9

    Article  PubMed  CAS  Google Scholar 

  38. Capparelli EV, Lane JR, Romanowski GL, et al. The influences of renal function and maturation on vancomycin elimination in newborns and infants. J Clin Pharmacol 2001; 41: 927–34

    Article  PubMed  CAS  Google Scholar 

  39. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants part 1. Clin Pharmacokinet 2002; 41(12): 959–98

    Article  PubMed  CAS  Google Scholar 

  40. Rating D, Jager-Roman E, Nau H, et al. Enzyme induction in neonates after fetal exposure to antiepileptic drugs. Pediatr Pharmacol (New York) 1983; 3(3–4): 209–18

    CAS  Google Scholar 

  41. Morselli PL. Antiepileptic drugs. Milan: 1976: 1–45

  42. Pineiro-Carrero VM, Pineiro EO. Liver. Pediatrics 2004; 113 (4 Suppl.): 1097–106

    PubMed  Google Scholar 

  43. Wildt SN, Kearns GL, Leeder JS, et al. Glucuronidation in humans: pharmacogenitic and developmental aspects. Clin Pharmacokinet 1999; 36(6): 439–43

    Article  PubMed  Google Scholar 

  44. Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37(6): 485–505

    Article  PubMed  Google Scholar 

  45. Bouwmeester NJ, Anderson BJ, Tibboel D, et al. Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children. Br J Anaesth 2004 Feb; 92(2): 208–17

    Article  PubMed  CAS  Google Scholar 

  46. Murry DJ, Crom WR, Reddick WE, et al. Liver volume as a determinant of drug clearance in children and adolescents. Drug Metab Dispos 1995; 23(10): 1110–6

    PubMed  CAS  Google Scholar 

  47. Kanamori M, Takahaski H, Echizen H. Developmental changes in the liver weight- and body weight-normalized clearance of theophylline, phenytoine and cyclosporine in children. Int J Clin Pharmacol Ther 2002; 40(11): 485–92

    PubMed  CAS  Google Scholar 

  48. Blanco JG, Harrison PL, Evans WE, et al. human cytochrome P450 maximal activities in pediatric versus adult liver. Drug Metab Dispos 2000; 28(4): 379–82

    PubMed  CAS  Google Scholar 

  49. Björkman S. Prediction of cytochrome P450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet 2006; 45(11): 1–11

    Article  PubMed  Google Scholar 

  50. Ginsberg G, Hattis D, Miller M, et al. Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci 2002; 66: 185–200

    Article  PubMed  CAS  Google Scholar 

  51. Alcorn J, McNamara PJ. Ontogeny of hepatic and renal systemic clearance pathways in infants part 2. Clin Pharmacokinet 2002; 41(13): 1077–94

    Article  PubMed  CAS  Google Scholar 

  52. Murat I, Billard V, Vernois J, et al. Pharmacokinetics of propofol after a single dose in children aged 1–3 years with minor burns: comparison of three data analysis approaches. Anesthesiology 1996 Mar; 84(3): 526–32

    Article  PubMed  CAS  Google Scholar 

  53. Kataria BK, Ved SA, Nicodemus HF, et al. The pharmacokinetics of propofol in children using three different data analysis approaches. Anesthesiology 1994 Jan; 80(1): 104–22

    Article  PubMed  CAS  Google Scholar 

  54. Valtonen M, Lisalo E, Kanto J, et al. Propofol as an induction agent in children: pain on injection and pharmacokinetics. Acta Anaesthesiol Scand 1989; 33: 152–5

    Article  PubMed  CAS  Google Scholar 

  55. Knibbe CAJ, Zuideveld KP, Aarts LPHJ, et al. Allometric relationships between the pharmacokinetics of propofol in rats, children and adults. Br J Clin Pharmacol 2005; 59(6): 705–11

    Article  PubMed  CAS  Google Scholar 

  56. Evans WE, Relling MV, de Graaf S, et al. Hepatic drug clearance in children: studies with indocyanine green as a model substrate. J Pharmaceut Sci 1989 Jun; 78(6): 452–6

    Article  CAS  Google Scholar 

  57. Cooney GF, Habucky K, Hoppu K. Cyclosporin pharmacokinetics in paediatric transplant recipients. Clin Pharmacokinet 1997; 32(6): 481–95

    Article  PubMed  CAS  Google Scholar 

  58. Kearns GL, Andersson T, James LP, et al. Omeprazole disposition in infants and children; role of age and CYP2C19 genotype. J Clin Pharmacol 2003 Aug; 43(8): 840–8

    Article  PubMed  CAS  Google Scholar 

  59. Crom WR, Relling MV, Christensen ML, et al. Age-related differences in hepatic drug clearance in children: studies with lorazepam and antipyrine. Clin Pharmacol Ther 1991; 50(2): 132–40

    Article  PubMed  CAS  Google Scholar 

  60. Hunt A, Joel S, Dick G, et al. Population pharmacokinetics of oral morphine and its glucuronides in children receiving morphine as immediate-release liquid or sustained-release tablets for cancer pain. J Pediatr 1999 Jul; 135(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  61. Bakshi SS, Britto P, Capparelli E, et al. Evaluation of pharmacokinetics, safety, tolerance, and activity of combination of zalcitabine and zidovudine in stable, zidovudine-treated pediatric patients with human immunodeficiency virus infection. AIDS Clinical Trials Group Protocol 190 Team. J Infect Dis 1997 May; 175(5): 1039–50

    Article  PubMed  CAS  Google Scholar 

  62. Payne KA, Roelofse JA, Shipton EA. Pharmacokinetics of oral tramadol drops for postoperative pain relief in children aged 4 to 7 years: a pilot study. Anesth Prog 2002; 49(4): 109–12

    PubMed  CAS  Google Scholar 

  63. Murthy BVS, Pandya KS, Booker PD, et al. Pharmacokinetics of tramadol in children after i.V. or caudal epidural administration. Br J Anaesth 2000; 84(3): 346–9

    Article  PubMed  CAS  Google Scholar 

  64. Van Der Marel CD, Anderson BJ, Van Lingen RA, et al. Paracetamol and metabolite pharmacokinetics in infants. Eur J Clin Pharmacol 2003; 59: 243–51

    Article  PubMed  CAS  Google Scholar 

  65. Yared A, Ichikawa I. Glomerular circulation and function in pediatric nephrology. 3rd ed. Baltimore: Williams and Wilkins, 1994: 39–55

    Google Scholar 

  66. Brande van den JL, Gelderen van HH, Monnens LAH. Pediatrics [in Dutch]. Utrecht: Bunge, 1990

    Google Scholar 

  67. Bird NJ, Henderson BL, Lui D, et al. Indexing glomerular filtration rate to suit children. J Nucl Med 2003; 44: 1037–4

    PubMed  Google Scholar 

  68. Sawyer M, Ratain MJ. Body surface area as a determinant of pharmacokinetics and drug dosing. InvestNew Drugs 2001; 19(2): 171–7

    Article  PubMed  CAS  Google Scholar 

  69. Hayton WL. Maturation and growth of renal faction: dosing renally cleared drugs in children. AAPS PharmSci 2002; 2(3): e3

    Google Scholar 

  70. Peters AM, Henderson BL, Lui D. Indexed glomerular filtration rate as a function of age and body size. Clin Sci 2000; 98: 439–44

    Article  PubMed  CAS  Google Scholar 

  71. Siegel SR, Oh W. Renal function as a marker of human fetal maturation. Acta Paediatr Scand 1976; 65: 481–5

    Article  PubMed  CAS  Google Scholar 

  72. Gallini F, Maggio L, Romagnoli C, et al. Progression of renal function in preterm neonates with gestational age ≤32 weeks. Pediatr Nephrol 2000; 14: 119–24

    Article  Google Scholar 

  73. Rennie JM, Roberten NRC. Textbook of neonatology. 3rd ed. Edinburgh: Churchill Livingstone, 1999: 417–433

    Google Scholar 

  74. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 2003 Oct; 18(10): 981–5

    Article  PubMed  Google Scholar 

  75. Brion LP, Fleischman AR, Schwartz GJ. Gentamicin interval in newborn infants as determined by renal function and postconceptional age. Pediatr Nephrol 1991; 5: 675–8

    Article  PubMed  CAS  Google Scholar 

  76. Schwartz GJ, Haycock GB, Edelmann CM, et al. Simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976; 58: 259–63

    PubMed  CAS  Google Scholar 

  77. Hogg RJ, Furth S, Lemley KV, et al. National Kidney Foundation’s kidney disease outcomes quality initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics 2003; 111(6): 1416–21

    Article  PubMed  Google Scholar 

  78. Counahan R, Chantier C, Ghazali S, et al. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child 1976; 51: 875–8

    Article  PubMed  CAS  Google Scholar 

  79. Morris MC, Allanby CW, Tolesland P, et al. Evaluation of a height/plasma creatinine formula in the measurement of glomerular filtration rate. Arch Dis Child 1982; 57: 611–5

    Article  PubMed  CAS  Google Scholar 

  80. Leger F, Bouissou F, Coulais Y, et al. Estimation of glomerular filtration rate in children. Pediatr Nephrol 2002; 17: 903–7

    Article  PubMed  Google Scholar 

  81. Hellerstein S, Alon U, Warady BA. Creatinine for estimation of glomerular filtration rate. Pediatr Nephrol 1992; 6(6): 507–11

    Article  PubMed  CAS  Google Scholar 

  82. Pierrat A, Gravier E, Saunders C, et al. Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz and Modification of Diet in Renal Disease formulas. Kidney Int 2003; 64: 1425–36

    Article  PubMed  Google Scholar 

  83. Saul JP, Schaffer MS, Karpawich PP, et al. Single-dose pharmacokinetics of sotalol in a pediatric population with supraventricular and/or ventricular tachyarrhythmia. J Clin Pharmacol 2001; 41(1): 35–43

    Article  PubMed  CAS  Google Scholar 

  84. Rossum LK, Mathot RAA, Cransberg K, et al. Estimation of the glomerular filtration rate in children: which algorithm should be used? Pediatr Nephrol 2005; 20: 1769–75

    Article  PubMed  Google Scholar 

  85. van den Anker JN, de Groot R, Broerse HM, et al. Assessment of glomerular filtration rate in preterm infants by serum creatinine: comparison with inulin clearance. Pediatrics 1995 Dec; 96(6): 1156–8

    PubMed  Google Scholar 

  86. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    Article  PubMed  CAS  Google Scholar 

  87. Reed MD, Kliegman RM, Yamashita TS, et al. Clinical pharmacology of imipenem and cilastatin in premature infants during the first week of life. Antimicrob Agents Chemother 1990; 34(6): 1172–7

    Article  PubMed  CAS  Google Scholar 

  88. Jacobs RF, Kearns GL, Brown AL, et al. Renal clearance of imipenem in children. Eur J Clin Microbiol 1984; 3(5): 471–4

    Article  PubMed  CAS  Google Scholar 

  89. Soyka LF. Pediatric clinical pharmacology of digoxin. Pediatr Clin North Am 1981 Feb; 28(1): 203–16

    PubMed  CAS  Google Scholar 

  90. De Hoog M, Mouton JW, van den Anker JN. New dosing strategies for antibacterial agents in the neonate. Semin Fetal Neonatal Med 2005; 10: 185–94

    Article  PubMed  Google Scholar 

  91. Thomson AH, Kerr S, Wright S. Population pharmacokinetics of caffeine in neonates and young infants. Ther Drug Monit 1996 Jun; 18(3): 245–53

    Article  PubMed  CAS  Google Scholar 

  92. Paul D, Standifer KM, Inturrisi CE, et al. Pharmacological characterization of morphine-6 beta-glucuronide, a very potent morphine metabolite. Pharmacol Exp Ther 1989; 251(2): 447–83

    Google Scholar 

  93. Fanaroff AA, Martin RJ, editors. Neonatal-perinatal medicine. 7th ed. New York: Elsevier, 2001

    Google Scholar 

  94. Rigby-Jones AEB, Nolan JA, Priston MJ, et al. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology 2002; 97(6): 1393–400

    Article  PubMed  CAS  Google Scholar 

  95. Rodman JH, Relling MV, Stewart CF, et al. Clinical pharmacokinetics and pharmacodynamics of anticancer drugs in children. Semin Oncol 1993; 20(1): 18–29

    PubMed  CAS  Google Scholar 

  96. van den Anker JN, Hop WC, de Groot R, et al. Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr Res 1994 Nov; 36(5): 578–81

    Article  PubMed  CAS  Google Scholar 

  97. Zwaveling J, Bredius RGM, Cremers SCLM, et al. Intravenous busulfan in children prior to stem cell transplantation: study of pharmacokinetics in association with early clinical outcome and toxicity. Bone Marrow Transplant 2005 Jan; 35(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  98. Kleinknecht D, Ganeval D, Droz D. Acute renal failure after high doses of gentamicin and cephalothin. Lancet 1973; I: 1129

    Article  Google Scholar 

  99. Soldin OP, Soldin SJ. Review: therapeutic drug monitoring in pediatrics. Ther Drug Monit 2002; 24: 1–8

    Article  PubMed  CAS  Google Scholar 

  100. Johnson TN. Modelling approaches to dose estimation in children. Br J Clin Pharmacol 2005; 59(6): 663–9

    Article  PubMed  CAS  Google Scholar 

  101. Baber NS. Tripartite meeting. Paediatric regulatory guidelines: do they help in optimizing dose selection for children? Br J Clin Pharmacol 2005; 69(6): 660–2

    Article  Google Scholar 

  102. Laer S, Elshoff JP, Meibohm B, et al. Development of a safe and effective pediatric dosing regimen for sotalol based on population pharmacokinetics and pharmacodynamics in children with supraventricular tachycardia. J Am Coll Cardiol 2005; 46(7): 1322–30

    Article  PubMed  CAS  Google Scholar 

  103. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol 2004; 59(6): 691–704

    Article  CAS  Google Scholar 

  104. Ginsberg G, Hattis D, Russ A, et al. Physiologically based pharmacokinetic (PBPK) modeling of caffeine and theophylline in neonated and adults: implications for assessing children/s risks from environmental agents. J Toxicol Environ Health A 2004; 67: 297–329

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No funding was received for conducting the review and/or preparation of the paper. The authors have no conflicts of interest that are relevant to the content of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imke H. Bartelink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartelink, I.H., Rademaker, C.M.A., Schobben, A.F.A.M. et al. Guidelines on Paediatric Dosing on the Basis of Developmental Physiology and Pharmacokinetic Considerations. Clin Pharmacokinet 45, 1077–1097 (2006). https://doi.org/10.2165/00003088-200645110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200645110-00003

Keywords

Navigation