Skip to main content
Log in

Role of Infection in the Pathogenesis of Alzheimer’s Disease

Implications for Treatment

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

While our understanding of the neuropathology of Alzheimer’s disease continues to grow, its pathogenesis remains a subject of intense debate. Genetic mutations contribute to a minority of early-onset autosomal dominant cases, but most cases are of either late-onset familial or sporadic form. CNS infections, most notably herpes simplex virus type 1, Chlamydophila pneumoniae and several types of spirochetes, have been previously suggested as possible aetiological agents in the development of sporadic Alzheimer’s disease but with little consistent evidence. However, peripheral infections may have a role to play in accelerating neurodegeneration in Alzheimer’s disease by activating already primed microglial cells within the CNS. Potential pharmacological interventions could aim at modification of this peripheral inflammatory response through targeting various agents involved in this inflammatory pathway. However, benefit could also be gained clinically through the meticulous detection, treatment and prevention of infections in individuals either alone or in combination with anti-inflammatory therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes C. The genetics and molecular pathology of dementia. In: Jacoby R, Oppenheimer C, Dening T, et al., editors. Oxford textbook of old age psychiatry. Oxford: Oxford University Press, 2008: 103–17

    Google Scholar 

  2. Bell JE. Neuropathology. In: Johnstone EC, Cunningham-Owens DG, Lawrie SM, et al., editors. Companion to psychiatric studies. London: Churchill Livingstone, 2004: 68–80

    Google Scholar 

  3. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC FAS). Pathological correlates of late onset dementia in a multicentre, community based population in England and Wales. Lancet 2001; 357: 169–75

    Article  Google Scholar 

  4. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science 1992 Apr 10; 256(5054): 184–5

    Article  PubMed  CAS  Google Scholar 

  5. Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993 Dec 17; 75(6): 1039–42

    Article  PubMed  CAS  Google Scholar 

  6. Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease [letter]. Lancet 1976 Dec 25; 2(8000): 1403

    Article  PubMed  CAS  Google Scholar 

  7. Saunders AM. Apolipoprotein E and Alzheimer disease: an update on genetic and functional analyses. J Neuropathol Exp Neurol 2000 Sep; 59(9): 751–8

    PubMed  CAS  Google Scholar 

  8. Lynch JR, Tang W, Wang H, et al. APOE genotype and an ApoE-mimetic peptide modify the systemic and central nervous system inflammatory response. J Biol Chem 2003; 278: 48529–33

    Article  PubMed  CAS  Google Scholar 

  9. Miklossy J. Chronic inflammation and amyloidogenesis in Alzheimer’s disease: role of spirochetes. J Alzheimers Dis 2008; 13: 381–91

    PubMed  CAS  Google Scholar 

  10. McArthur JC. HIV-associated dementia. In: Davis LE, Kennedy PGE, editors. Infectious diseases of the nervous system. Oxford: Butterworth-Heinemann, 2000: 165–213

    Google Scholar 

  11. Tomlinson BE. The pathology of dementia. Contemp Neurol Ser 1977; 15: 113–53

    PubMed  CAS  Google Scholar 

  12. Itzhaki RF, Wozniak MA. Herpes simplex virus type 1 in Alzheimer’s disease: the enemy within. J Alzheimers Dis 2008 May; 13(4): 393–405

    PubMed  CAS  Google Scholar 

  13. Balin BJ, Little CS, Hammond CJ, et al. Chlamydophila pneumoniae and the etiology of late-onset Alzheimer’s disease. J Alzheimers Dis 2008 May; 13(4): 371–80

    PubMed  CAS  Google Scholar 

  14. Miklossy J. Chronic inflammation and amyloidogenesis in Alzheimer’s disease: role of spirochetes. J Alzheimers Dis 2008 May; 13(4): 381–91

    PubMed  CAS  Google Scholar 

  15. Pogo BG, Casals J, Elizan TS. A study of viral genomes and antigens in brains of patients with Alzheimer’s disease. Brain 1987 Aug; 110 (Pt 4): 907–15

    Article  PubMed  Google Scholar 

  16. Friedl RP, May C, Dahlberg J. The viral hypothesis of Alzheimer’s disease: absence of antibodies to lentiviruses. Arch Neurol 1990 Feb; 47(2): 177–8

    Article  Google Scholar 

  17. Renvoize EB, Awad IO, Hambling MH. A sero-epidemiological study of conventional infectious agents in Alzheimer’s disease. Age Ageing 1987 Sep; 16(5): 311–4

    Article  PubMed  CAS  Google Scholar 

  18. Kountouras J, Gavalas E, Zavos C, et al. Alzheimer’s disease and Helicobacter pylori infection: defective immune regulation and apoptosis as proposed common links. Med Hypotheses 2007; 68(2): 378–88

    Article  PubMed  CAS  Google Scholar 

  19. Liedtke W, Opalka B, Zimmerman CW, et al. Age distribution of latent HSV1 and Varicella zoster virus genome in human nervous tissue. J Neurol Sci 1993; 116(1): 6–11

    Article  PubMed  CAS  Google Scholar 

  20. Ball MJ. Limbic predilection in AD: is reactivated herpes virus involved? Can J Neurol Sci 1982; 9: 303–6

    PubMed  CAS  Google Scholar 

  21. Shipley SJ, Parkin ET, Itzhaki RF, et al. Herpes simplex virus interferes with amyloid precursor protein processing. BMC Microbiol 2005 Aug 18; 5: 48–55

    Article  PubMed  Google Scholar 

  22. Jamieson GA, Maitland NJ, Wilcock GK, et al. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. J Med Virol 1991 Apr; 33(4): 224–7

    Article  PubMed  CAS  Google Scholar 

  23. Itzhaki RF, Dobson CB, Lin WR, et al. Association of HSV1 and apolipoprotein E-varepsilon4 in Alzheimer’s disease. J Neurovirol 2001 Dec; 7(6): 570–1

    Article  PubMed  CAS  Google Scholar 

  24. Itzhaki R. Herpes simplex virus type 1, apolipoprotein E and Alzheimer’ disease. Herpes 2004 Jun; 11Suppl. 2: 77A–82A

    PubMed  Google Scholar 

  25. Federoff HJ. An infectious conspiracy: the case for HSV-1 and APOEepsilon4 in Alzheimer’s disease. Neurobiol Aging 1999 Jul–Aug; 20(4): 467–8

    Article  PubMed  CAS  Google Scholar 

  26. Marques AR, Straus SE, Fahle G, et al. Lack of association between HSV-1 DNA in the brain, Alzheimer’s disease and apolipoprotein E 4. J Neurovirol 2001 Feb; 7(1): 82–3

    Article  PubMed  CAS  Google Scholar 

  27. Lin WR, Wozniak MA, Esiri MM, et al. Herpes simplex encephalitis: involvement of apolipoprotein E genotype. J Neurol Neurosurg Psychiatry 2001; 70(1): 117–9

    Article  PubMed  CAS  Google Scholar 

  28. Mann DM, Tinkler AM, Yates PO. Neurological disease and herpes simplex virus: an immunohistochemical study. Acta Neuropathol (Berl) 1983; 60(1–2): 24–8

    Article  CAS  Google Scholar 

  29. Robinson SR, Dobson C, Lyons J. Challenges and directions for the pathogen hypothesis of Alzheimer’s disease. Neurobiol Ageing 2004 May–Jun; 25(5): 629–37

    Article  CAS  Google Scholar 

  30. Denaro FJ, Staub P, Colmer J, et al. Coexistence of Alzheimer disease neuropathology with herpes simplex encephalitis. Cell Mol Biol (Noisy-le-grand) 2003 Dec; 49(8): 1233–40

    CAS  Google Scholar 

  31. Itzhaki RF. Herpes simplex virus type 1, apolipoprotein E and Alzheimer’s disease. Herpes 2004 Jun; 11Suppl. 2: 77A–82A

    PubMed  Google Scholar 

  32. Grayston JT, Campbell LA, Kuo CC, et al. A new respiratory tract pathogen: Chlamydia pneumoniae strain TWAR. J Infect Dis 1990 Apr; 161(4): 618–25

    Article  PubMed  CAS  Google Scholar 

  33. Balin BJ, Gerard HC, Arking EJ, et al. Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 1998 Jun; 187(1): 23–42

    Article  PubMed  CAS  Google Scholar 

  34. Paradowski B, Jaremko M, Dobosz T, et al. Evaluation of CSF-Chlamydia pneumoniae, CSF-tau, and CSF-Abeta42 in Alzheimer’s disease and vascular dementia. J Neurol 2007 Feb; 254(2): 154–9

    Article  PubMed  CAS  Google Scholar 

  35. Little CS, Hammond CJ, MacIntyre A, et al. Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 2004 Apr; 25(4): 419–29

    Article  PubMed  CAS  Google Scholar 

  36. Appelt DM, Roupas MR, Way DS, et al. Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae. BMC Neurosci 2008 Jan 24; 9: 13

    Article  PubMed  Google Scholar 

  37. Gerard HC, Wildt KL, Whittum-Hudson JA, et al. The load of Chlamydia pneumoniae in the Alzheimer’s brain varies with APOE genotype. Microb Pathog 2005 Jul–Aug; 39(1–2): 19–26

    Article  PubMed  CAS  Google Scholar 

  38. Gerard HC, Dreses-Werringloer U, Wildt KS, et al. Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 2006 Dec; 48(3): 355–66

    Article  PubMed  CAS  Google Scholar 

  39. Nochlin D, Shaw CM, Campbell LA, et al. Failure to detect Chlamydophila pneumoniae in brain tissues of Alzheimer’s disease [letter]. Neurology 1999 Nov 10; 53(8): 1888

    Article  PubMed  CAS  Google Scholar 

  40. Ring RH, Lyons JM. Failure to detect Chlamydophila pneumoniae in late onset Alzheimer’s brain. J Clin Microbiol 2000 Jul; 38(7): 2591–4

    PubMed  CAS  Google Scholar 

  41. Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer’s disease. J Am Geriatr Soc 2004 Mar; 52(3): 381–7

    Article  PubMed  Google Scholar 

  42. Choi Y, Kim HS, Shin KY. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology 2007 Nov; 32(11): 2393–404

    Article  PubMed  CAS  Google Scholar 

  43. Miklossy J. Alzheimer’s disease: a spirochetosis? Neuroreport 1993 Jul; 4(7): 841–8

    Article  PubMed  CAS  Google Scholar 

  44. Riviere GR, Riviere KH, Smith KS. Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 2002 Apr; 17(2): 113–8

    Article  PubMed  CAS  Google Scholar 

  45. Miklossy J, Khalili K, Gem L, et al. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis 2004 Dec; 6(6): 639–49

    PubMed  Google Scholar 

  46. MacDonald AB, Miranda JM. Concurrent neocortical borreliosis and Alzheimer’s disease. Hum Pathol 1987 Jul; 18(7): 759–61

    Article  PubMed  CAS  Google Scholar 

  47. Miklossy J, Kis A, Radenovic A, et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging 2006 Feb; 27(2): 228–36

    Article  PubMed  CAS  Google Scholar 

  48. Ohnishi S, Koide A, Koide SJ. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. J Mol Biol 2000 Aug 11; 301(2): 477–89

    Article  PubMed  CAS  Google Scholar 

  49. MacDonald AB. Plaques of Alzheimer’s disease originate from cysts of Borrelia burgdorferi, the Lyme disease spirochete. Med Hypotheses 2006; 67(3): 592–600

    Article  PubMed  CAS  Google Scholar 

  50. Pappolla MA, Omar R, Saran B, et al. Concurrent neuroborreliosis and Alzheimer’s disease: analysis of the evidence. Hum Pathol 1989 Aug; 20(8): 753–7

    Article  PubMed  CAS  Google Scholar 

  51. Gutacker M, Valsangiacomo C, Balmelli T, et al. Arguments against the involvement of Borrelia burgdorferi sensu lato in Alzheimer’s disease. Res Microbiol 1998 Jan; 149(1): 31–7

    Article  PubMed  CAS  Google Scholar 

  52. Marques AR, Weir SC, Fahle GA, et al. Lack of evidence of Borrelia involvement in Alzheimer’s disease [letter]. J Infect Dis 2000 Sep; 182(3): 1006–7

    Article  PubMed  CAS  Google Scholar 

  53. Galbussera A, Tremolizzo L, Isella V, et al. Lack of evidence for Borrelia burgdorferi seropositivity in Alzheimer disease. Alzheimer Dis Assoc Disord 2008 Jul–Sep; 22(3): 308

    Article  PubMed  Google Scholar 

  54. Urosevic N, Martins RN. Infection and Alzheimer’s disease: the APOE ε4 connection and lipid metabolism. J Alzheimers Dis 2008 May; 13(4): 421–35

    PubMed  CAS  Google Scholar 

  55. Hart BL. Biological basis of the behaviour of sick animals. Neurosci Biobehav Rev 1988; 12: 123–37

    Article  PubMed  CAS  Google Scholar 

  56. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in the CNS. Br JPharmacol 2006; 147Suppl. 1: S232–40

    CAS  Google Scholar 

  57. Perry VH, Cunningam C, Holmes C. Systemic infections and inflammation affect chronic neurodegeneration. Nature 2007; 7: 161–7

    CAS  Google Scholar 

  58. Tracey KJ. The inflammatory reflex. Nature 2002; 420: 853–9

    Article  PubMed  CAS  Google Scholar 

  59. LaFlamme N, Rivest S. Effects of systemic immunogenic insults and circulating proinflammatory cytokines on the transcription of the inhibitory factor kBa within specific cellular populations of the rat brain. J Neurochem 1999; 73: 309–21

    Article  PubMed  CAS  Google Scholar 

  60. Chakravarty S, Herkenham M. Toll-like receptor 4 on nonhematopoietic cells sustains CNS inflammation during endotoxaemia, independent of systemic cytokines. J Neurosci 2005; 25: 1788–96

    Article  PubMed  CAS  Google Scholar 

  61. Ek M, Engblom D, Saha S, et al. Inflammatory response: pathway across the blood-brain barrier. Nature 2001 Mar 22; 410(6827): 430–1

    Article  PubMed  CAS  Google Scholar 

  62. Akiyama H, Bargar S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Ageing 2000 May–Jun; 21(3): 383–421

    Article  CAS  Google Scholar 

  63. Ajmone-Cat MA, Nicolini A, Minghetti L. Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signalling pathways and selectively promotes prostaglandin E2 synthesis. J Neurochem 2003 Dec; 87(5): 1193–203

    Article  PubMed  CAS  Google Scholar 

  64. VonBernhardi R. Glial cell dysregulation: a new perspective on Alzheimer’s disease. Neurotox Res 2007 Dec; 12(4): 215–32

    Article  Google Scholar 

  65. Rojo LE, Fernandez JA, Maccioni AA, et al. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 2008 Jan; 39(1): 1–16

    Article  PubMed  CAS  Google Scholar 

  66. Sly LM, Krzesicki RF, Brashler JR, et al. Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer’s disease. Brain Res Bull 2001 Dec; 56(6): 581–8

    Article  PubMed  CAS  Google Scholar 

  67. Herber DL, Roth LM, Wilson D. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol 2004 Nov; 190(1): 245–53

    Article  PubMed  CAS  Google Scholar 

  68. Cunningham C, Wilcockson D, Campion S, et al. Central and systemic endotoxin challenges exacerbate the central inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci 2005; 25: 9275–84

    Article  PubMed  CAS  Google Scholar 

  69. Lee J, Chan SL, Mattson MP. Adverse effect of a presenilin-1 mutation in microglia results in enhanced nitric oxide and inflammatory cytokine responses to immune challenge in the brain. Neuromolecular Med 2002; 2(1): 29–45

    Article  PubMed  CAS  Google Scholar 

  70. Kitazawa M, Oddo S, Yamasaki TR, et al. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 2005 Sep 28; 25(39): 8843–53

    Article  PubMed  CAS  Google Scholar 

  71. Cunningham C, Campion S, Lunnon K, et al. Systemic inflammation induces acute behavioural and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2008 Feb 15; 65(4): 304–12

    Article  PubMed  Google Scholar 

  72. McCusker J, Cole M, Dendukuri N, et al. Delirium in older medical inpatients and subsequent cognitive and functional status: a prospective study. CMAJ 2001 Sep 4; 165(5): 575–83

    PubMed  CAS  Google Scholar 

  73. Rahkonen T, Luukkainen-Makkula R, Paanila S, et al. Delirium episode as a sign of undetected dementia among community dwelling elderly subjects: a 2 year follow up study. J Neurol Neurosurg Psychiatry 2000 Oct; 69(4): 519–21

    Article  PubMed  CAS  Google Scholar 

  74. Holmes C, El-Okl M, Williams AL, et al. Systemic infection, interleukin 1 β and cognitive decline in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2003; 74: 788–9

    Article  PubMed  CAS  Google Scholar 

  75. Holmes C, Perry H, Cunningham C, et al. Systemic cytokines and clinical progression in Alzheimer’s disease. Alzheimer Dementia 2008;4Suppl. 2: 159–60

    Article  Google Scholar 

  76. Dunn N, Mullee M, Perry VH, et al. Association between dementia and infectious disease: evidence from a casecontrol study. Alzheimer Dis Assoc Disord 2005 Apr–Jun; 19(2): 91–4

    Article  PubMed  Google Scholar 

  77. Engelhart MJ, Geerlings MI, Meijer J, et al. Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study. Arch Neurol 2004 May; 61(5): 668–72

    Article  PubMed  Google Scholar 

  78. Kamer AR, Dasanayeke A, Craig RG, et al. Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimers Dis 2008 May; 13(4): 437–49

    PubMed  CAS  Google Scholar 

  79. Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin 2006 Aug; 24(3): 521–38

    Article  PubMed  Google Scholar 

  80. Barrientos RM, Higgins EA, Biedenkapp JC, et al. Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging 2006 May; 27(5): 723–32

    Article  PubMed  Google Scholar 

  81. Park KH, Hallows JL, Chakrabarty P, et al. Conditional neuronal simian virus 40 T antigen expression induces Alzheimer-like tau and amyloid pathology in mice. J Neurosci 2007 Mar 14; 27(11): 2969–78

    Article  PubMed  CAS  Google Scholar 

  82. Verreault R, Laurin D, Lindsay J, et al. Past exposure to vaccines and subsequent risk of AD. CMAJ 2001; 165: 1495–8

    PubMed  CAS  Google Scholar 

  83. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003; 421(6291): 384–8

    Article  PubMed  CAS  Google Scholar 

  84. Tobinick E. Perispinal etanercept for treatment of Alzheimer’s disease. Curr Alzheimer Res 2007 Dec; 4(5): 550–2

    Article  PubMed  CAS  Google Scholar 

  85. Griffin WS. Perispinal etanercept: potential as an Alzheimer therapeutic [letter]. J Neuroinflammation 2008; 5: 3

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge funding from the Alzheimer’s Society UK for our research on the role of infections in the progression of Alzheimer’s disease. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Holmes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, C., Cotterell, D. Role of Infection in the Pathogenesis of Alzheimer’s Disease. CNS Drugs 23, 993–1002 (2009). https://doi.org/10.2165/11310910-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11310910-000000000-00000

Keywords

Navigation