Skip to main content
Log in

A Review of New Fluoroquinolones

Focus on their Use in Respiratory Tract Infections

  • Review Article
  • Published:
Treatments in Respiratory Medicine

Abstract

The new respiratory fluoroquinolones (gatifloxacin, gemifloxacin, levofloxacin, moxifloxacin, and on the horizon, garenoxacin) offer many improved qualities over older agents such as ciprofloxacin. These include retaining excellent activity against Gram-negative bacilli, with improved Gram-positive activity (including Streptococcus pneumoniae and Staphylococcus aureus). In addition, gatifloxacin, moxifloxacin and garenoxacin all demonstrate increased anaerobic activity (including activity against Bacteroides fragilis). The new fluoroquinolones possess greater bioavailability and longer serum half-lives compared with ciprofloxacin. The new fluoroquinolones allow for once-daily administration, which may improve patient adherence. The high bioavailability allows for rapid step down from intravenous administration to oral therapy, minimizing unnecessary hospitalization, which may decrease costs and improve quality of life of patients. Clinical trials involving the treatment of community-acquired respiratory infections (acute exacerbations of chronic bronchitis, acute sinusitis, and community-acquired pneumonia) demonstrate high bacterial eradication rates and clinical cure rates. In the treatment of community-acquired respiratory tract infections, the various new fluoroquinolones appear to be comparable to each other, but may be more effective than macrolide or cephalosporin-based regimens. However, additional data are required before it can be emphatically stated that the new fluoroquinolones as a class are responsible for better outcomes than comparators in community-acquired respiratory infections. Gemifloxacin (except for higher rates of hypersensitivity), levofloxacin, and moxifloxacin have relatively mild adverse effects that are more or less comparable to ciprofloxacin. In our opinion, gatifloxacin should not be used, due to glucose alterations which may be serious. Although all new fluoroquinolones react with metal ion-containing drugs (antacids), other drug interactions are relatively mild compared with ciprofloxacin. The new fluoroquinolones gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin have much to offer in terms of bacterial eradication, including activity against resistant respiratory pathogens such as penicillin-resistant, macrolide-resistant, and multidrug-resistant S. pneumoniae. However, ciprofloxacin-resistant organisms, including ciprofloxacin-resistant S. pneumoniae, are becoming more prevalent, thus prudent use must be exercised when prescribing these valuable agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI
Table XII
Table XIII
Table XIV
Table XV
Table XVI

Similar content being viewed by others

Notes

  1. 1 The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Zhanel GG, Ennis K, Vercaigne L, et al. A critical review of the fluoroquinolones: focus on respiratory infections. Drugs 2002; 62(1): 13–59

    Article  CAS  PubMed  Google Scholar 

  2. Zhanel GG, Waltky A, Laing N, et al. Pharmacodynamic activity of fluoroquinolones against ciprofloxacin-resistant Streptococcus pneumoniae. J Antimicrob Chemother 2002 Feb; 49: 807–12

    Article  CAS  PubMed  Google Scholar 

  3. Ball P, Stahlmann R, Kubin R, et al. Safety profile of oral and intravenous moxifloxacin: cumulative data from clinical trials and postmarketing studies. Clin Ther 2004; 26(7): 940–50

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi K, Takahata M, Kawamura Y, et al. Synthesis, antibacterial activity, and toxicity of 7-(isoindolin-5-yl)-4-oxoquinoline-3-carboxylic acids: discovery of the novel des-F (6)-quinolone antibacterial agent garenoxacin (T-3811 or BMS-284756). Arzneimittelforschung 2002; 52: 903–13

    CAS  PubMed  Google Scholar 

  5. Lawrence LE, Wu P, Fan L, et al. The inhibition and selectivity of bacterial topoisomerases by BMS-284756 and its analogues. J Antimicrob Chemother 2001; 48: 195–201

    Article  CAS  PubMed  Google Scholar 

  6. Davis R, Bryson HM. Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy. Drugs 1994; 47: 677–700

    Article  CAS  PubMed  Google Scholar 

  7. Dalhoff A, Endermann R. In vitro activity of BAY 12-8039, a new 8-methoxyquinolone. Chemother 1996; 42: 410–25

    Article  CAS  Google Scholar 

  8. Goa KL, Bryson HM, Markham A. Sparfloxacin: a review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections. Drugs 1997; 53: 700–25

    Article  CAS  PubMed  Google Scholar 

  9. Hosaka M, Kinoshita S, Toyoma A, et al. Antibacterial properties of AM-1155, a new 8-methoxyquinolone. J Antimicrob Chemother 1995; 36: 293–301

    Article  CAS  PubMed  Google Scholar 

  10. Jones RN, Gales A, Sader H. Activities of BMS 284756 against Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae isolates from SENTRY Antimicrobial Surveillance Program Medical Centers in Latin America (1999). Antimicrob Agents Chemother 2001; 45: 1463–6

    Article  PubMed  Google Scholar 

  11. Marshall SA, Jones RN, Murray PR, et al. In vitro comparison of DU-6859a, a novel fluoroquinolone, with other quinolones and oral cephalosporins tested against 5086 recent clinical isolates. J Antimicrob Chemother 1993; 32: 877–84

    Article  CAS  PubMed  Google Scholar 

  12. McCloskey L, Moore T, Niconovich N, et al. In vitro activity of gemifloxacin against a broad range of recent clinical isolates from the USA. J Antimicrob Chemother 2000; 45: 13–21

    Article  CAS  PubMed  Google Scholar 

  13. Wagstaff AJ, Balfour JA. Grepafloxacin. Drugs 1997; 53: 817–27

    Article  CAS  PubMed  Google Scholar 

  14. Domagala J. Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 1994; 33: 685–706

    Article  CAS  PubMed  Google Scholar 

  15. Saravolatz LD, Leggett J. Gatifloxacin, gemifloxacin, and moxifloxacin: the role of 3 newer fluoroquinolones. Clin Infect Dis 2003; 37: 1210–5

    Article  CAS  PubMed  Google Scholar 

  16. Andersson MI, MacGowan AP. Development of the quinolones. J Antimicrob Chemother 2003; 1: 1–11

    Article  CAS  Google Scholar 

  17. Appelbaum PC, Hunter PA. The fluoroquinolone antibacterials: past, present and future perspectives. Int J Antimicrob Agents 2000; 16: 5–15

    Article  CAS  PubMed  Google Scholar 

  18. Cabrera Perez MA, Garcia AR, Teruel CF. A topological-substructural molecular design (TOPS-MODE) approach to determining pharmacokinetics and pharmacological properties of 6-fluoroquinolone derivatives. Eur J Pharm Biopharm 2003; 56: 197–206

    Article  PubMed  CAS  Google Scholar 

  19. Bryskier A, Chantot JF. Classification and structure-activity relationships of fluoroquinolones. Drugs 1995; 49: 16–28

    Article  CAS  PubMed  Google Scholar 

  20. Zhanel GG, Walkty A, Vercaigne L. The new fluoroquinolones: a critical review. Can J Infect Dis 1999; 10: 207–38

    CAS  PubMed  Google Scholar 

  21. Hayashi K, Todo Y, Hamamoto S, et al. T-3811, a novel des-F (6)-quinolone: synthesis and in vitro activity of 7-(isoindolin-5-yl) derivatives. Program and abstracts of the Thirty-Seventh Interscience Conference on Anti-Microbial Agents and Chemotherapy; Toronto (ON), Canada: ASM, 1997; 158: 173

    Google Scholar 

  22. Lawrence LE, Frosco M, Ryan B, et al. Bactericidal activities of BMS-284756, a novel Des-F (6)-quinolone, against Staphylococcus aureus strains with topoisomerase mutations. Antimicrob Agents Chemother 2002; 46(1): 191–5

    Article  CAS  PubMed  Google Scholar 

  23. Lawrence LE, Wu P, Fan L, et al. The inhibition and selectivity of bacterial topoisomerases by BMS-284756 and its analogues. J Antimicrob Chemother 2001; 48(2): 195–201

    Article  CAS  PubMed  Google Scholar 

  24. Wu P, Barrett JF, Denbleyker DL, et al. Target-based activity of BMS-284756 as measured by the supercoiling inhibition and cleavable complex assay. 40th ICAAC Abstracts; 2000 Sep 17–20; (Session 78 (C): 81 (751)

  25. Nagai A, Miyazaki M, Morita T, et al. Comparative articular toxicity of garenoxacin, a novel quinolone antimicrobial agent, in juvenile beagle dogs. J Toxicol Sci 2002; 27: 219–28

    Article  CAS  PubMed  Google Scholar 

  26. Tillotson GS, File TM. Gemifloxacin: a new, potent fluoroquinolone for the therapy of lower respiratory tract infections. Expert Rev Anti Infect Ther 2004; 2(6): 831–43

    Article  PubMed  Google Scholar 

  27. Bong K, Yoo DMT, Chul-Soon Yong, et al. Gemifloxacin: a new fluoroquinolone approved for treatment of respiratory infections. Ann Pharmacother 2004 Jul/Aug; 38: 1226–35

    Article  CAS  Google Scholar 

  28. Jones RN, Pfaller MA, Stilwell M. Activity and spectrum of BMS 284756, a new des-F (6) quinolone, tested against strains of ciprofloxacin-resistant Grampositive cocci. Diagn Microbiol Infect Dis 2001; 39: 133–5

    Article  CAS  PubMed  Google Scholar 

  29. Nightingale CH. Moxifloxacin, a new antibiotic designed to treat community-acquired respiratory tract infections: a review of microbiologic and pharmacokinetic-pharmacodynamic characteristics. Pharmacotherapy 2000; 20: 245–56

    Article  CAS  PubMed  Google Scholar 

  30. Brighty KE, Gootz TD. The chemistry and biological profile of trovafloxacin. J Antimicrob Chemother 1997; 39: 1–14

    Article  CAS  PubMed  Google Scholar 

  31. Soussy CJ, Nguyen J, Goldstein F, et al. In vitro antibacterial activity of moxifloxacin against hospital isolates: a multicenter study. Clin Microbiol Infect 2003 Oct; 9(10): 997–1005

    Article  CAS  PubMed  Google Scholar 

  32. O’Donnel JA, Gelone SP. The newer fluoroquinolones. Infect Dis Clin North Am 2004; 18(3): 691–716

    Article  Google Scholar 

  33. Schmitz FJ, Boos M, Mayer S, et al. Increased in vitro activity of the novel desfluoro (6) quinolone BMS-284756 against genetically defined clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 2002; 49: 283–7

    Article  CAS  PubMed  Google Scholar 

  34. Zhanel GG, Noreddin AM. Pharmacokinetics and pharmacodynamics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol 2001; 1(5): 459–63

    Article  CAS  PubMed  Google Scholar 

  35. Smith HJ, Hoban DJ, Zhanel GG. Dual activity of fluoroquinolones against Streptococcus pneumoniae: the facts behind the claims. J Antimicrob Chemother 2002; 49: 893–5

    Article  CAS  PubMed  Google Scholar 

  36. Zhanel GG, Palatnick L, Nichol KA, et al. Antimicrobial resistance in Haemophilus influenza and Moraxella catarrhalis respiratory tract isolates: results of the Canadian respiratory organism susceptibility study, 1997–2002. Antimicrob Agents Chemother 2003 Jun; 47(6): 1875–81

    Article  CAS  PubMed  Google Scholar 

  37. Smith HJ, Noreddin AM, Siemens CG, et al. Designing fluoroquinolone breakpoints for Streptococcus pneumoniae by using genetics instead of pharmacokinetics-pharmacodynamics. Antimicrob Agents Chemother 2004 Apr; 48(9): 3630–5

    Article  CAS  PubMed  Google Scholar 

  38. Zhanel GG, Hoban DJ, Schurek K, et al. Role of efflux mechanisms on fluoroquinolone resistance in Streptococcus pneumoniae and Pseudomonas aeruginosa. Int J Antimicrob Agents 2004; 24: 529–35

    Article  CAS  PubMed  Google Scholar 

  39. Smith HJ, Nichol KA, Hoban DJ, et al. Stretching the mutant prevention concentration (MPC) beyond its limits. J Antimicrob Chemother 2003 Apr; 51: 1323–5

    Article  CAS  PubMed  Google Scholar 

  40. Smith HJ, Walters M, Hisanaga T, et al. Mutant prevention concentrations for single-step fluoroquinolone-resistant mutants of wild-type, efflux-positive, or ParC or GyrA mutation-containing Streptococcus pneumoniae isolates. Antimicrob Agents Chemother 2004 Oct; 48(10): 3954–8

    Article  CAS  PubMed  Google Scholar 

  41. Nichol KA, Zhanel GG, Hoban DJ. Molecular epidemiology of penicillin-resistant and ciprofloxacin-resistant Streptococcus pneumoniae in Canada. Antimicrob Agents Chemother 2003 Feb; 47: 804–8

    Article  CAS  PubMed  Google Scholar 

  42. Biedenbach DJ, Jones RN. Five-year analysis of Haemophilus isolates with reduced susceptibility to fluoroquinolones: prevalence results from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 2003 Jan; 46: 55–61

    Article  CAS  PubMed  Google Scholar 

  43. Bouchillon SK, Johnson JL. In vitro activity of gemifloxacin and contemporary oral antimicrobial agents against 27247 Gram-positive and Gram-negative aerobic isolates: a global surveillance study. Int J Antimicrob Agents 2004; 23: 181–96

    Article  CAS  PubMed  Google Scholar 

  44. Casellas JM, Tome G. Comparative in-vitro activity of levofloxacin against isolates of bacteria from adult patients with community-acquired lower respiratory tract infections. J Antimicrob Chemother 1999; 43: 37–42

    Article  CAS  PubMed  Google Scholar 

  45. Johnson DM, Jones RN, Erwin ME. Anti-streptococcal activity of SB-265805 (LB20304), a novel fluoronaphthyridone, compared with 5 other compounds, including quality control guidelines. Diagn Microbiol Infect Dis 1999; 33: 87–91

    Article  CAS  PubMed  Google Scholar 

  46. Decousser JW, Picot F. Comparative in vitro activity of farepenem and 11 other antimicrobial agents against 250 invasive Streptococcus pneumoniae isolates from France. Eur J Clin Microbiol Infect Dis 2003; 22: 561–5

    Article  CAS  PubMed  Google Scholar 

  47. Dembry LM, Schock KD. Comparison of in vitro activity of trovafloxacin against Gram positive and Gram negative organisms with quinolones and beta-lactam antimicrobial agents. Diagn Microbiol Infect Dis 1998; 31: 301–11

    Article  CAS  PubMed  Google Scholar 

  48. Diekema DJ, Rolston KV. Antimicrobial activity of gatifloxacin compared to seven other compounds tested against Gram-positive organisms isolated at 10 cancer-treatment centers. Diagn Microbiol Infect Dis 1999; 34: 37–43

    Article  CAS  PubMed  Google Scholar 

  49. Edmiston CE, Seabrook GR. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother 2004; 48: 1012–6

    Article  CAS  PubMed  Google Scholar 

  50. Fung-Tome J, Minassian B, Kolek B, et al. In vitro antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, gatifloxacin. J Antimicrob Chemother 2000; 45: 437–46

    Article  Google Scholar 

  51. Fung-Tome J, Minassian B, Kolek B, et al. Antibacterial spectrum of a novel desfluoro (6) quinolone, BMS-284756. Antimicrob Agents Chemother 2000; 44: 3351–6

    Article  Google Scholar 

  52. Gordon KA, Pfaller MA, Jones RN. BMS284756 (formerly T-3811, a des-fluoroquinolone) potency and spectrum tested against over 10,000 bacterial blood-stream infection isolates from the SENTRY antimicrobial surveillance programme (2000). J Antimicrob Chemother 2002; 49: 851–5

    Article  CAS  PubMed  Google Scholar 

  53. Harnett SJ, Fraise AP, Andrews JM, et al. Comparative study of the in vitro activity of a new fluoroquinolone, ABT-492. J Antimicrob Chemother 2004; 53: 783–92

    Article  CAS  PubMed  Google Scholar 

  54. Jacobs MR, Felmingham D, Appelbaum PC, et al. The Alexander Project 1998–2000: susceptibility of pathogens isolated from community-acquired respiratory tract infection to commonly used antimicrobial agents. J Antimicrob Chemother 2003; 52: 229–46

    Article  CAS  PubMed  Google Scholar 

  55. Keller N, Smollen G, Davidson Y, et al. The susceptibility of Streptococcus pneumoniae to levofloxacin and other antibiotics. J Antimicrob Chemother 1999; 43: 1–3

    Article  CAS  PubMed  Google Scholar 

  56. King A, May J, French G, et al. Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother 2000; 45: 1–12

    Article  CAS  PubMed  Google Scholar 

  57. King A, Pillips I, Kaniga K. Comparative in vitro activity of telavancin (TD-6424), a rapidly bactericidal, concentration-dependent anti-infective with multiple mechanisms of action against Gram-positive bacteria. J Antimicrob Chemother 2004; 53: 797–803

    Article  CAS  PubMed  Google Scholar 

  58. Kirby JT, Mutnick AH, Jones RN, et al. Geographic variations in garenoxacin (BMS284756) activity tested against pathogens associated with skin and soft tissue infections: report from the SENTRY Antimicrobial Surveillance Program (2000). Diagn Microbiol Infect Dis 2002; 43: 303–9

    Article  CAS  PubMed  Google Scholar 

  59. Kolek B, Warr G, Bonner D, et al. Intracellular penetration and bactericidal activity of the novel des-fluoro (6) quinolone, BMS-284756. J Antimicrob Chemother 2001; 48: 445–6

    Article  CAS  PubMed  Google Scholar 

  60. Ling TK, Liu EY, Cheng AF. In vitro activity of trovafloxacin (CP99,219), a new fluoroquinolone against hospital isolates. Chemotherapy 1999; 45: 22–7

    Article  CAS  PubMed  Google Scholar 

  61. Low DE, Muller M, Duncan CL, et al. Activity of BMS-284756, a novel des-fluoro (6)quinolone, against Staphylococcus aureus, including contributions of mutations to quinolone resistance. Antimicrob Agents Chemother 2002; 46: 1119–21

    Article  CAS  PubMed  Google Scholar 

  62. Martinez-Martinez L, Pascual A, Suarez AI, et al. In-vitro activity of levofloxacin, ofloxacin, and D-ofloxacin against coryneform bacteria and Listeria monocytogenes. J Antimicrob Chemother 1999; 43: 27–32

    Article  CAS  PubMed  Google Scholar 

  63. Milatovic D, Schmitz FJ, Brisse S, et al. In vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates. Antimicrob Agents Chemother 2000; 44: 1102–7

    Article  CAS  PubMed  Google Scholar 

  64. Alfonso EC, Miller D. Comparative in vitro activity of levofloxacin, ofloxacin, and ciprofloxacin against ocular streptococcal isolates. Cornea 2004; 23: 289–93

    Article  PubMed  Google Scholar 

  65. Montanari MP, Mingoia M, Marchetti F, et al. In vitro activity of levofloxacin against Gram-positive bacteria. Chemotherapy 1999; 45: 411–7

    Article  CAS  PubMed  Google Scholar 

  66. Montanari MP, Prenna M, Mingoia M, et al. In vitro antibacterial activity of trovafloxacin and five other fluoroquinolones. Chemother 1998; 44: 85–93

    Article  CAS  Google Scholar 

  67. Niki Y, Yamashita Y, Otoh H. In vitro activities of sitafloxacin (DU-6859a) against major pathogens of community-acquired pneumonia. Kurashiki, Japan: Kawasaki Medical School, 1999

    Google Scholar 

  68. Nilius AM, Shen LL, Hensey-Rudloff D, et al. In vitro antibacterial potency and spectrum of ABT-492, a new fluoroquinolone. Antimicrob Agents Chemother 2003; 47: 3260–9

    Article  CAS  PubMed  Google Scholar 

  69. Noviello S, Ianniello F, Leone S, et al. Comparative activity of garenoxacin and other agents by susceptibility and time-kill testing against Staphyiococcus aureus, Streptococcus pyogenes and respiratory pathogens. J Antimicrob Chemother 2003; 52: 869–72

    Article  CAS  PubMed  Google Scholar 

  70. Odland BA, Jones RN, Verhoef J, et al. Antimicrobial activity of gatifloxacin (AM-1155, CG5501), and four other fluoroquinolones tested against 2,284 recent clinical strains of Streptococcus pneumoniae from Europe, Latin America, Canada, and the United States. The SENTRY Antimicrobial Surveillance Group (Americas and Europe). Diagn Microbiol Infect Dis 1999; 34: 315–20

    CAS  PubMed  Google Scholar 

  71. Pankuch GA, Hoellman DB, Jacobs MR, et al. Antipneumococcal activity of MEN 10700, a new penem, compared with other compounds, by MIC and time-kill kinetics. J Antimicrob Chemother 1999; 44: 381–4

    Article  CAS  PubMed  Google Scholar 

  72. Smith HJ, Hoban DJ, Zhanel GG. Molecular characterization and mutant prevention concentration (MPC) determination of single-step fluoroquinolone resistant mutants of S. pneumoniae. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Sep 22–25; Chicago (IL)

  73. Stein GE. Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin Infect Dis 1996; 23 Suppl. 1: 19–24

    Article  Google Scholar 

  74. Struwig MC, Botha PL, Chalkley LJ. In vitro activities of 15 antimicrobial agents against clinical isolates of South African enterococci. Antimicrob Agents Chemother 1998; 42: 2752–5

    CAS  PubMed  Google Scholar 

  75. Takahata MJ, Mitsuyama Y, Yamashiro M, et al. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F-(6)-quinolone. Antimicrob Agents Chemother 1999; 43: 1077–84

    CAS  PubMed  Google Scholar 

  76. Thomson KS, Sanders CC. The effects of increasing levels of quinolone resistance on in-vitro activity of four quinolones. J Antimicrob Chemother 1998; 42: 179–87

    Article  CAS  PubMed  Google Scholar 

  77. Torres-Viera CWC, Moeltering RC. Comparative in vitro activity of gatifloxacin, a new fluoroquinolone antimicrobial, against Gram-positive bacteria [poster]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. San Diego (CA): ASM, 1998

    Google Scholar 

  78. Verhaegen J, Verbist L. In vitro activity of gemifloxacin and other antimicrobials against recent isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophila, Burkholderia cepacia and Acinetobacter spp. [poster no. 2306]. 39th Interscience Conference of Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  79. Weller TM, Andrews JM, Jevons G, et al. The in vitro activity of BMS-284756, a new des-fluorinated quinolone. J Antimicrob Chemother 2002; 49: 177–84

    Article  CAS  PubMed  Google Scholar 

  80. Yoo BK, Triller DM, Yong CS, et al. Gemifloxacin: a new fluoroquinolone approved for treatment of respiratory infections. Ann Pharmacother 2004; 38: 1226–35

    Article  CAS  PubMed  Google Scholar 

  81. Barry AL, Fuchs PC, Brown SD. Antibacterial activity of moxifloxacin (Bay 12-8039) against aerobic clinical isolates, and provisional criteria for disk susceptibility tests. Eur J Clin Microbiol Infect Dis 1999; 18: 305–9

    Article  CAS  PubMed  Google Scholar 

  82. Biedenbach DJ, Barret MS, Croco MA, et al. BAY 12-8039, a novel fluoroquinolone: activity against important respiratory tract pathogens. Diagn Microbiol Infect Dis 1998; 32: 45–50

    Article  CAS  PubMed  Google Scholar 

  83. Deshpande DJ, Diekema DJ, Jones RN. Comparative activity of clinafloxacin and nine other compounds tested against 1000 contemporary clinical isolates from patients in United States hospitals. Diagn Microbiol Infect Dis 1999; 35: 81–8

    Article  CAS  PubMed  Google Scholar 

  84. Drlica K. A strategy for fighting antibiotic resistance. ASM News 2001; 67: 27–33

    Google Scholar 

  85. Giamarellos-Bourboulis EJ, Sambatakou H, Grecka P, et al. In vitro activity of quinupristin/dalfopristin and newer quinolones combined with gentamicin against resistant isolates of Entemcoccus faecalis and Enterococcus faecium. Eur J Clin Microbiol Infect Dis 1998; 17: 657–61

    CAS  PubMed  Google Scholar 

  86. Gordon KA, Sader HS, Jones RN. Contemporary re-evaluation of the activity and spectrum of grepafloxacin tested against isolates in the United States. Diagn Microbiol Infect Dis 2003; 47: 377–83

    Article  CAS  PubMed  Google Scholar 

  87. Hardy D, Amsterdam D, Mandell LA, et al. Comparative in vitro activities of ciprofloxacin, gemifloxacin, grepafloxacin, moxifloxacin, ofloxacin, sparfloxacin, trovafloxacin, and other antimicrobial agents against bloodstream isolates of Gram-positive cocci. Antimicrob Agents Chemother 2000; 44: 802–5

    Article  CAS  PubMed  Google Scholar 

  88. Hecht DW, Osmolski JR. Activities of garenoxacin (BMS-284756) and other agents against anaerobic clinical isolates. Antimicrob Agents Chemother 2003; 47: 910–6

    Article  CAS  PubMed  Google Scholar 

  89. Hoban DJ, Zhanel GG, Karlowsky JA. In vitro activity of the novel ketolide HMR 3647 and comparative oral antibiotics against Canadian respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Diagn Microbiol Infect Dis 1999; 35: 37–44

    Article  CAS  PubMed  Google Scholar 

  90. Hoellman DB, Lin G, Jacobs MR, et al. Anti-pneumococcal activity of gatifloxacin compared with other quinolone and non-quinolone agents. J Antimicrob Chemother 1999; 43: 645–9

    Article  CAS  PubMed  Google Scholar 

  91. Hoogkamp-Korstanje JA, Roelofs-Willemse J. Comparative in vitro activity of moxifloxacin against Gram-positive clinical isolates. J Antimicrob Chemother 2000; 45: 31–9

    Article  CAS  PubMed  Google Scholar 

  92. Ieven M, Goossens W, De Wit S, et al. In vitro activity of gemifloxacin compared with other antimicrobial agents against recent clinical isolates of streptococci. J Antimicrob Chemother 2000; 45: 51–3

    Article  CAS  PubMed  Google Scholar 

  93. Jones RN, Pfaller MA, Doern GV. Comparative antimicrobial activity of trovafloxacin tested against 3049 Streptococcus pneumoniae isolates from the 1997–1998 respiratory infection season. Diagn Microbiol Infect Dis 1998; 32: 119–26

    Article  CAS  PubMed  Google Scholar 

  94. Martinez-Martinez L, Joyanes P, Suarez AI. Activity of gemifloxacin against clinical isolates of Listeria monocytogenes and Coryneform bacteria [poster no. 1504]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  95. Mikamo H, Kawazoe K, Sato Y, et al. In vitro and in vivo antibacterial activities of AM-1155 in the fields of obstetrics and gynecology. Chemotherapy 1998; 44: 283–42

    Google Scholar 

  96. Pong A, Thomson KS, Moland ES, et al. Activity of moxifloxacin against pathogens with decreased susceptibility to ciprofloxacin. J Antimicrob Chemother 1999; 44: 621–7

    Article  CAS  PubMed  Google Scholar 

  97. Rittenhouse SL, McCloskey J, Broskey N, et al. In vitro antibacterial activity of gemifloxacin and comparator compounds against common respiratory pathogens. J Antimicrob Chemother 2000; 45 Suppl. 1: 23–7

    Article  CAS  PubMed  Google Scholar 

  98. Watanabe A, Tokue Y, Takahashi H, et al. In vitro activity of HSR-903, a new oral quinolone, against bacteria causing respiratory infections. Antimicrob Agents Chemother 1999; 43: 1767–8

    CAS  PubMed  Google Scholar 

  99. Wise R, Andrews JM. The in-vitro activity and tentative break-point of gemifloxacin, a new fluoroquinolone. J Antimicrob Chemother 1999; 44: 679–88

    Article  CAS  PubMed  Google Scholar 

  100. Woodcock JM, Andrews JM, Boswell FJ, et al. In vitro activity of BAY 12-8039, a new fluoroquinolone. Antimicrob Agents Chemother 1997; 41: 101–6

    CAS  PubMed  Google Scholar 

  101. Wootton M, Bowker KE, Janowska A, et al. In-vitro activity of HMR 3647 against Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and beta-haemolytic streptococci. J Antimicrob Chemother 1999; 44: 445–53

    Article  CAS  PubMed  Google Scholar 

  102. Ackerman G, Schaumann R, Pless B, et al. Comparative activity of moxifloxacin in vitro against obligately anaerobic bacteria. Eur J Clin Microbiol Infect Dis 2000; 19: 228–32

    Article  Google Scholar 

  103. Aldridge KE, Ashcraft DS. Comparison of the in vitro activities of Bay 12-8039, a new quinolone, and other antimicrobials against clinically important anaerobes. Antimicrob Agents Chemother 1997; 41(3): 709–11

    CAS  PubMed  Google Scholar 

  104. Bebear CM, Renaudin H, Boudjadja A, et al. In vitro activity of BAY 12-8039, a new fluoroquinolone, against mycoplasmas. Antimicrob Agents Chemother 1998; 42: 703–4

    Article  CAS  PubMed  Google Scholar 

  105. Bebear CM, Renaudin H, Schaeverbeke T, et al. In-vitro activity of grepafloxacin, a new fluoroquinolone, against mycoplasmas. J Antimicrob Chemother 1999; 43: 711–4

    Article  CAS  PubMed  Google Scholar 

  106. Biedenbach DJ, Beach ML, Jones RN. Antimicrobial activity of gatifloxacin tested against Neisseria gonorrhoeae using three methods and a collection of fluoroquinolone-resistant strains. Diagn Microbiol Infect Dis 1998; 32: 307–11

    Article  CAS  PubMed  Google Scholar 

  107. Biedenbach DJ, Croco MA, Barret TJ, et al. Comparative in vitro activity of gatifloxacin against Stenotrophomonas maltophila and Burkholderia species isolates including evaluation of disk diffusion and E test methods. Eur J Clin Microbiol Infect Dis 1999; 18: 307–11

    Article  Google Scholar 

  108. Cohen MA, Huband MD. In-vitro susceptibilities of Mycoplasma pneumoniae, Mycoplasma hominis and Ureaplasma urealyticum to clinafloxacin, PD 131628, ciprofloxacin and comparator drugs. J Antimicrob Chemother 1997; 40: 308–9

    Article  CAS  PubMed  Google Scholar 

  109. Cormican MG, Jones RN. Antimicrobial activity and spectrum of LB20304, a novel fluoronaphthyridone. Antimicrob Agents Chemother 1997; 41: 204–11

    CAS  PubMed  Google Scholar 

  110. Coyle EA, Kaatz GW, Rybak MJ. Activities of newer fluoroquinolones against ciprofloxacin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45: 1654–9

    Article  CAS  PubMed  Google Scholar 

  111. Credito KL, Jacobs MR, Appelbaum PC. Time-kill studies of the antianaerobe activity of garenoxacin compared with those of nine other agents. Antimicrob Agents Chemother 2003; 47: 1399–402

    Article  CAS  PubMed  Google Scholar 

  112. Davies TA, Kelly LM, Hoellman DB, et al. Activities and postantibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother 2000; 44: 633–9

    Article  CAS  PubMed  Google Scholar 

  113. Diekema DJ, Pfaller MA, Jones RN, et al. Survey of blood-stream infections due to Gram-negative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, and Latin America for the SENTRY Antimicrobial Surveillance Program, 1997. Clin Infect Dis 1999; 29: 595–607

    Article  CAS  PubMed  Google Scholar 

  114. Donati M, Pollini GM, Sparacino M, et al. Comparative in vitro activity of garenoxacin against Chlamydia spp. J Antimicrob Chemother 2002; 50: 407–10

    Article  CAS  PubMed  Google Scholar 

  115. Dubois J, St-Pierre C. Comparative in vitro activity and post antibiotic effect of gemifloxacin against Legionella spp. J Antimicrob Chemother 2000; 45: 41–6

    Article  CAS  PubMed  Google Scholar 

  116. Dubois J, St-Pierre C. In vitro activity of gatifloxacin, compared with ciprofloxacin, clarithromycin, erythromycin, and rifampin, against Legionella species. Diagn Microbiol Infect Dis 1999; 33: 261–5

    Article  CAS  PubMed  Google Scholar 

  117. Dubois J, St-Pierre C. In vitro susceptibility study of BMS-284756 against Legionella species. Diagn Microbiol Infect Dis 2001; 41: 79–82

    Article  CAS  PubMed  Google Scholar 

  118. Dubreuil L, Behra-Millet J, Neut C, et al. In vitro activity of gatifloxacin, a new fluoroquinolone, against 204 anaerobes compared to seven other compounds. Clin Microbiol Infect 2003; 9: 1133–8

    Article  CAS  PubMed  Google Scholar 

  119. Duffy LB, Crabb D, Searcey K, et al. Comparative potency of gemifloxacin, new quinolones, macrolides, tetracycline and clindamycin against Mycoplasma spp. J Antimicrob Chemother 2000; 45: 29–33

    Article  CAS  PubMed  Google Scholar 

  120. Edlund CS, Sabouri S, Nord CE. Comparative in vitro activity of BAY 12-8039 and five other antimicrobial agents against anaerobic bacteria. Eur J Clin Microbiol Infect Dis 1998; 17: 193–5

    Article  CAS  PubMed  Google Scholar 

  121. Clinical and Laboratory Standards Institute (CLSI/NCCLS). Performance standards for antimicrobial susceptibility testing: 15th informational supplement, M100-S15 CLSI (http://www.clsi.org). Wayne (PA): CLSI/NCCLS, 2005

    Google Scholar 

  122. Miller D, Alfonso EC. Comparative in vitro activity of levofloxacin, ofloxacin, and ciprofloxacin against ocular streptococcal isolates. Cornea 2004; 23: 289–93

    Article  PubMed  Google Scholar 

  123. Verhaegen J, Verbist L. In-vitro activities of 16 non-beta lactam antibiotics against penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae. J Antimicrob Chemother 1999; 43: 563–7

    Article  CAS  PubMed  Google Scholar 

  124. Weiss K, Laverdier M, Restieri C. Comparative activity of trovafloxacin and Bay 12-8039 against 452 clinical isolates of Streptococcus pneumoniae. J Antimicrob Chemother 1998; 42: 5232–5

    Article  Google Scholar 

  125. Abbanat D, Macielag M, Bush K. Novel antibacterial agents for the treatment of serious Gram-positive infections. Expert Opin Investig Drugs 2003; 12: 379–99

    Article  CAS  PubMed  Google Scholar 

  126. Bassetti M, Dembry LM, Farrel PA, et al. Antimicrobial activities of BMS-284756 compared with those of fluoroquinolones and beta lactams against Gram positive clinical isolates. Antimicrob Agents Chemother 2002; 46: 234–8

    Article  CAS  PubMed  Google Scholar 

  127. Davies T, Kelly LM, Pankuch GA. Antipneumococcal activity of gatifloxacin compared to nine other agents. Antimicrob Agents Chemother 2000; 44: 304–10

    Article  CAS  PubMed  Google Scholar 

  128. Wise R, Andrews JM. The activity of grepafloxacin against respiratory pathogens in the UK. J Antimicrob Chemother 1997; 40: 27–30

    Article  CAS  PubMed  Google Scholar 

  129. Thornsberry C, Ogilvie PT, Holley Jr HP, et al. Survey of susceptibilities of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis isolates to 26 antimicrobial agents: a prospective US study. Antimicrob Agents Chemother 1999; 43: 2612–23

    CAS  PubMed  Google Scholar 

  130. Biedenbach DJ, Jones RN, Dipersio J. Fluoroquinolone resistance in H. influenzae (HFLU) and M. catarrhalis (MCAT): frequency of occurrences and strain characteristics in the SENTRY Antimicrobial Surveillance Program (1997–1999; North America) [poster no.54]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  131. Hoogkamp-Korstanje JA. In-vitro activities of ciprofloxacin, levofloxacin, lemofloxacin, ofloxacin, pefloxacin, sparfloxacin, and trovafloxacin against Gram positive and Gram negative pathogens from respiratory tract infections. J Antimicrob Chemother 1997; 40: 427–31

    Article  CAS  PubMed  Google Scholar 

  132. Rolston KV, Ho DH, LeBlanc B, et al. In-vitro activity of trovafloxacin against clinical bacterial isolates from patients with cancer. J Antimicrob Chemother 1997; 39: 15–22

    Article  CAS  PubMed  Google Scholar 

  133. Traub WH, Leonhard B. Susceptibility of Moraxella catarrhalis to 21 antimicrobial drugs: validity of current NCCLS criteria for the interpretation of agar disk diffusion antibiograms. Chemotherapy 1997; 43: 159–67

    Article  CAS  PubMed  Google Scholar 

  134. Betriu C, Redondo M, Palau ML, et al. Comparative in vitro activities of linezolid, quinupristin-dalfopristin, moxifloxacin, and trovafloxacin against erythromycin-susceptible and -resistant streptococci. Antimicrob Agents Chemother 2000; 44(7): 1838–41

    Article  CAS  PubMed  Google Scholar 

  135. Felmingham D, Robbins MJ, Ingley K, et al. In-vitro activity of trovafloxacin, a new fluoroquinolone, against recent clinical isolates. J Antimicrob Chemother 1997; 39: 43–9

    Article  CAS  PubMed  Google Scholar 

  136. Fuchs PC, Barry AL, Brown SD. In vitro activities of clinafloxacin against contemporary clinical bacterial isolates from 10 North American centers. Antimicrob Agents Chemother 1998; 42: 1274–7

    CAS  PubMed  Google Scholar 

  137. Isenberg HD, Alperstein P, France K. In vitro activity of ciprofloxacin, levofloxacin, and trovafloxacin, alone and in combination with beta-lactams, against clinical isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophila, and Burkholderia cepacia. Diagn Microbiol Infect Dis 1999; 33: 81–6

    Article  CAS  PubMed  Google Scholar 

  138. Frechette R. T-3811 Toyama/Bristol-Myers Squibb. Curr Opin Investig Drugs 2001; 2: 1706–11

    CAS  PubMed  Google Scholar 

  139. Howard W, Biedenbach DJ, Jones RN. Comparative antimicrobial spectrum and activity of the desfluoroquinolone BMS284756 (T-3811) tested against non-fermentative Gram-negative bacilli. Clin Microbiol Infect 2002; 8: 340–4

    Article  CAS  PubMed  Google Scholar 

  140. Biedenbach DJ, Jones RN, Pfaller MA. Activity of BMS284756 against 2,681 recent clinical isolates of Haemophilus influenza and Moraxella catarrhalis: report from The SENTRY Antimicrobial Surveillance Program (2000) in Europe, Canada and the United States. Diagn Microbiol Infect Dis 2001; 39: 245–50

    Article  CAS  PubMed  Google Scholar 

  141. Rolston KV, Frisbee-Hume S, LeBlanc BM, et al. Antimicrobial activity of a novel des-fluoro (6) quinolone, garenoxacin (BMS-284756) compared to other quinolones, against clinical isolates from cancer patients. Diagn Microbiol Infect Dis 2002; 44: 187–94

    Article  CAS  PubMed  Google Scholar 

  142. Gales AC, Jones RN, Gordon KA, et al. Activity and spectrum of 22 antimicrobial agents tested against urinary tract infection pathogens in hospitalized patients in Latin America: report from the second year of SENTRY antimicrobial surveillance program (1998). J Antimicrob Chemother 2000; 45: 295–303

    Article  CAS  PubMed  Google Scholar 

  143. Goldstein EJ, Citron DM, Merriam CV, et al. Activity of gatifloxacin compared to those of five other quinolones versus aerobic and anaerobic isolates from skin and soft tissue samples of human and animal bite wound infections. Antimicrob Agents Chemother 1999; 43: 1475–9

    CAS  PubMed  Google Scholar 

  144. Makino M, Miyazaka S, Oharo A. In vitro antibacterial activity of gemifloxacin (SB-265805) against common respiratory tract pathogens and urinary tract pathogens isolated in Japan. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  145. Sader HS, Jones RN, Gales AC, et al. Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). SENTRY Latin American Study Group. Diagn Microbiol Infect Dis 1998; 32: 289–301

    Article  CAS  Google Scholar 

  146. Weiss K, Restieri C, De Carolis E, et al. Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophila. J Antimicrob Chemother 2000; 45: 363–5

    Article  CAS  PubMed  Google Scholar 

  147. Felmingham D. Respiratory pathogens: assessing resistance patterns in Europe and the potential role of grepafloxacin as treatment of patients with infections caused by these organisms. J Antimicrob Chemother 2000; 45: 1–8

    Article  CAS  PubMed  Google Scholar 

  148. Hoban DJ, Bouchillon SK, Johnson JL, et al. Comparative In vitro activity of gemifloxacin, ciprofloxacin, levofloxacin, and ofloxacin in a North American surveillance study. Diagn Microbiol Infect Dis 2001; 40: 51–7

    Article  CAS  PubMed  Google Scholar 

  149. Jones RN, Biedenbach DJ, Erwin ME, et al. Activity of gatifloxacin against Haemophilus influenzae and Moraxella catarrhalis, including susceptibility test development, E-test comparisons, and quality control guidelines for H influenzae. J Clin Microbiol 1999; 37: 1999–2002

    CAS  PubMed  Google Scholar 

  150. Visalli MA, Bajaksouzian S, Jacobs MR, et al. Comparative activity of trovafloxacin, alone and in combination with other agents, against Gram-negative nonfermentative rods. Antimicrob Agents Chemother 1997; 41: 1475–81

    CAS  PubMed  Google Scholar 

  151. Ednie LM, Jacobs MR, Appelbaum PC. Activities of gatifloxacin compared to those of seven other agents against anaerobic organisms. Antimicrob Agents Chemother 1998; 42: 2459–62

    CAS  PubMed  Google Scholar 

  152. Goldstein EJ, Citron DM, Hudspeth M, et al. Trovafloxacin compared with levofloxacin, ofloxacin, ciprofloxacin, azithromycin and clarithromycin against unusual aerobic and anaerobic human and animal bite-wound pathogens. J Antimicrob Chemother 1998; 41: 391–6

    Article  CAS  PubMed  Google Scholar 

  153. Schaumann R, Ackerman G, Pless B, et al. In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria. Antimicrob Agents Chemother 1999; 43: 2783–6

    CAS  PubMed  Google Scholar 

  154. Wexler HM, Molitoris E, Molitoris D, et al. In vitro activity of levofloxacin against a selected group of anaerobic bacteria isolated from skin and soft tissue infections. Antimicrob Agents Chemother 1998; 42: 984–6

    CAS  PubMed  Google Scholar 

  155. Goldstein EJ, Citron DM, Merriam YA, et al. In vitro activities of the des-fluoro (6) quinolones BMS-284756 against aerobe pathogens isolated from skin and soft tissue animal and human bite wound infections. Antimicrob Agents Chemother 2002; 46: 866–70

    Article  CAS  PubMed  Google Scholar 

  156. Hoellman DB, Kelly LM, Jacobs MR, et al. Comparative antianaerobic activity of BMS 284756. Antimicrob Agents Chemother 2001; 45: 589–92

    Article  CAS  PubMed  Google Scholar 

  157. Rhomberg PR, Biedenbach DJ, Jones RN. Activity of BMS284756 (T-3811) tested against anaerobic bacteria, Campylobacter jejuni, Helicobacter pylori and Legionella spp. Diagn Microbiol Infect Dis 2001; 40: 45–9

    Article  CAS  PubMed  Google Scholar 

  158. Snydman DR, Jacobus NV, McDermott LA, et al. In vitro activities of newer quinolones against bacteroides group organisms. Antimicrob Agents Chemother 2002; 46: 3276–9

    Article  CAS  PubMed  Google Scholar 

  159. Goldstein EJ, Citron DM, Warren Y, et al. In vitro activity of gemifloxacin (SB 265805) against anaerobes. Antimicrob Agents Chemother 1999; 43: 2231–5

    CAS  PubMed  Google Scholar 

  160. Kato N, Tanaka K, Kato H, et al. In vitro activity of R-95867, the active metabolite of a new oral carbapenem, CS-834, against anaerobic bacteria. J Antimicrob Chemother 2000; 45: 357–61

    Article  CAS  PubMed  Google Scholar 

  161. Goldstein EJ, Citron DM, Hunt Gerardo S. Comparative in vitro activities of DU-6859a, levofloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against 387 aerobic and anaerobic bite wound isolates. Antimicrob Agents Chemother 1997; 41: 1193–5

    CAS  PubMed  Google Scholar 

  162. Betriu C, Gomez M, Palau ML, et al. Activities of new antimicrobial agents (trovafloxacin, moxifloxacin, sanfetrinem, and quinupristin-dalfopristin) against Bacteroides fragilis group: comparison with the activities of 14 other agents. Antimicrob Agents Chemother 1999; 43: 2320–2

    CAS  PubMed  Google Scholar 

  163. Goldstein EJ, Citron DM, Merriam CV, et al. Activities of telithromycin (HMR 3647, RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, and other antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 1999; 43: 2801–5

    CAS  PubMed  Google Scholar 

  164. Nielsen K, Bangsborg JM, Hoiby N. Susceptibility of Legionella species to five antibiotics and development of resistance by exposure of erythromycin, ciprofloxacin, and rifampicin. Diagn Microbiol Infect Dis 2000; 36: 43–8

    Article  CAS  PubMed  Google Scholar 

  165. Ullmann U, Schubert S, Krausse R. Comparative in-vitro activity of levofloxacin, other fluoroquinolones, doxycycline and erythromycin against Ureaplasma urealyticum and Mycoplasma hominis. J Antimicrob Chemother 1999; 43: 33–6

    Article  CAS  PubMed  Google Scholar 

  166. Malay S, Roblin PM, Reznik T, et al. In vitro activities of BMS-284756 against Chlamydia trachomatis and recent clinical isolates of Chlamydia pneumoniae. Antimicrob Agents Chemother 2002; 46: 517–8

    Article  CAS  PubMed  Google Scholar 

  167. Roblin PM, Reznik T, Hammerschlag MR. In vitro activity of garenoxacin against recent clinical isolates of Chlamydia pneumoniae. Int J Antimicrob Agents 2003 Jun; 21(6): 578–80

    Article  CAS  PubMed  Google Scholar 

  168. Waites KB, Crabb DM, Bing X, et al. In vitro susceptibilities to and bactericidal activities of garenoxacin (BMS-284756) and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob Agents Chemother 2003; 47: 161–5

    Article  CAS  PubMed  Google Scholar 

  169. Miyashita N, Niki Y, Kishimoto T, et al. In vitro and in vivo activities of AM-1155, a new fluoroquinolone, against Chlamydia spp. Antimicrob Agents Chemother 1997; 41: 1331–4

    CAS  PubMed  Google Scholar 

  170. Roblin PM, Hammerschlag MR. In-vitro activity of gatifloxacin against Chlamydia trachomatis and Chlamydia pneumoniae. J Antimicrob Chemother 1999; 44: 549–51

    Article  CAS  PubMed  Google Scholar 

  171. Roblin PM, Reznik T, Kutlin A. In vitro activities of gemifloxacin (SB 265805, LB20304) against recent clinical isolates of Chlamydia pneumoniae. Antimicrob Agents Chemother 1999; 43(11): 2806–7

    CAS  PubMed  Google Scholar 

  172. Roblin PM, Hammerschlag MR. In vitro activity of a new 8-methoxyquinolone, BAY 12-8039, against Chlamydia pneumoniae. Antimicrob Agents Chemother 1998; 42: 951–2

    CAS  PubMed  Google Scholar 

  173. Donati M, Rodriguez Fermepin M, Olma A, et al. Comparative in-vitro activity of moxifloxacin, minocycline, and azithromycin against Chlamydia spp. J Antimicrob Chemother 1999; 43: 825–7

    Article  CAS  PubMed  Google Scholar 

  174. Ridgway GL, Salman H, Robbins MJ, et al. The in-vitro activity of grepafloxacin against Chlamydia spp., Mycoplasma spp., Ureaplasma urealyticum and Legionella spp. J Antimicrob Chemother 1997; 40: 31–4

    Article  CAS  PubMed  Google Scholar 

  175. Miyashita N, Niki Y, Matsushima T. In vitro and in vivo activities of sitafloxacin against Chlamydia spp. Antimicrob Agents Chemother 2001; 45: 3270–2

    Article  CAS  PubMed  Google Scholar 

  176. Roblin PM, Kutlin A, Hammerschlag MR. In vitro activity of trovafloxacin against Chlamydia pneumoniae. Antimicrob Agents Chemother 1997; 41: 2033–4

    CAS  PubMed  Google Scholar 

  177. Schmitz FJ, Dalhoff A. In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur J Clin Microbiol Infect Dis 2003 Apr; 22: 203–21

    PubMed  Google Scholar 

  178. Flemingham D, Robbins MJ, Ingley K, et al. In-vitro activity of trovafloxacin, a new fluoroquinolone, against recent clinical isolates. J Antimicrob Chemother 1997; 39: 43–9

    Article  Google Scholar 

  179. Valdezate S, Vindel A, Baquero F, et al. Comparative in vitro activity of quinolones against Stenotrophomonas maltophila. Eur J Clin Microbiol Infect Dis 1999; 18: 908–11

    Article  CAS  PubMed  Google Scholar 

  180. Lacy MK, Nicolau DP, Nightingale CH, et al. Oral bioavailability and pharmacokinetics of trovafloxacin in patients with AIDS. Antimicrob Agents Chemother 1999; 43: 3005–7

    CAS  PubMed  Google Scholar 

  181. Bradley JS, Kearns GL, Reed MD, et al. Pharmacokinetics of fluoronaphthyridone, trovafloxacin (CP 99,219) in infants and children following administration of a single intravenous dose of alatrofloxacin. Antimicrob Agents Chemother 2000; 44: 1195–9

    Article  CAS  PubMed  Google Scholar 

  182. Russo R, Bello JA, Christopher L, et al. Lack of effect of high-fat meal on the bioavailability of garenoxacin oral suspension in healthy subjects. American Society of Hospital Pharmacists (ASHP) Midyear Clinical Meeting; 2002. Chicago (IL): ASHP, 2002

    Google Scholar 

  183. Gajjar DA, Sukoneck SC, Bello A, et al. Effect of a high-fat meal on the pharmacokinetics of the des-F (6)-quinolone BMS-284756. Pharmacotherapy 2002; 22: 160–5

    Article  CAS  PubMed  Google Scholar 

  184. Wise R, Andrews JM, Marshall G, et al. Pharmacokinetics and inflammatory fluid penetration of clinafloxacin. Antimicrob Agents Chemother 1998; 42: 428–30

    CAS  PubMed  Google Scholar 

  185. Honeybourne D, Andrews JM, Cunningham B, et al. The concentration of clinafloxacin in alveolar macrophages, epithelial lining fluid, bronchial mucosa and serum after administration of single 200mg oral doses to patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1999; 43: 153–5

    Article  CAS  PubMed  Google Scholar 

  186. Tanimura H, Uchiyama K, Kashiwagi H. Gallbladder tissue concentrations, biliary excretion and pharmacokinetics of OPC-17116. Drugs 1995; 49: 341–3

    Article  CAS  PubMed  Google Scholar 

  187. Child J, Andrews JM, Wise R. Pharmacokinetics and tissue penetration of the new fluoroquinolone grepafloxacin. Antimicrob Agents Chemother 1995; 39: 513–5

    Article  CAS  PubMed  Google Scholar 

  188. Takahata MJ, Itoh Y, Doi T. Penetration of OPC-17116, a new quinolone compound, into male genital tracts and its in vitro antibacterial activity. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy; 1991 Sep 29–Oct 3; Chicago (IL)

  189. Cook PJ, Andrews JM, Wise R, et al. Concentrations of OPC-17116, a new fluoroquinolone antibacterial, in serum and lung compartments. J Antimicrob Chemother 1995; 35: 317–26

    Article  CAS  PubMed  Google Scholar 

  190. Shimada J, Nogita T, Ishibashi Y. Clinical pharmacokinetics of sparfloxacin. Clin Pharmacokinet 1993; 25: 358–69

    Article  CAS  PubMed  Google Scholar 

  191. Schvler P, Zemper K, Borner K, et al. Penetration of sparfloxacin and ciprofloxacin into alveolar macrophages, epithelial lining fluid, and polymorphonuclear leucocytes. Eur Respir J 1997; 10: 1130–6

    Article  Google Scholar 

  192. Cutler NR, Vincent J, Jhee SS, et al. Penetration of trovafloxacin into cerebrospinal fluid in humans following intravenous infusion of alatrofloxacin. Antimicrob Agents Chemother 1997; 41: 1298–300

    CAS  PubMed  Google Scholar 

  193. Wise R, Mortiboy D, Child J, et al. Pharmacokinetics and penetration into inflammatory fluid of trovafloxacin (CP-99, 219). Antimicrob Agents Chemother 1996; 40: 47–9

    CAS  PubMed  Google Scholar 

  194. Childs S, Gleason D, Immergut M. Penetration of trovafloxacin into prostatic tissue following multiple dosing in man. 37th Interscience Conference on Antimicrob Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto (ON)

  195. Andrews J, Honeybourne D, Brenwald NP, et al. Concentrations of trovafloxacin in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum after administration of single or multiple oral doses to patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1997; 39: 797–802

    Article  CAS  PubMed  Google Scholar 

  196. Peleman RA, Van De Velde V, Germonpre PR, et al. Trovafloxacin concentration in airway fluids of patients with severe community-acquired pneumonia. Antimicrob Agents Chemother 2000; 44: 178–80

    Article  CAS  PubMed  Google Scholar 

  197. Wilson AP, Grunenberg RN. Ciprofloxacin: 10 years of clinical experience. Somerset: Maxim Medical, 1997

    Google Scholar 

  198. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 1997; 32: 101–19

    Article  CAS  PubMed  Google Scholar 

  199. Garcia-Saenz MC, Puente-Arias A, Fresnadillo-Martinez MJ, et al. Human aqueous humor levels of oral ciprofloxacin, levofloxacin, and moxifloxacin. J Cataract Refract Surg 2001; 27: 1969–74

    Article  CAS  PubMed  Google Scholar 

  200. Vance-Bryan K, Guay DR, Rotschafer JC. Clinical pharmacokinetics of ciprofloxacin. Clin Infect Dis 1990; 19: 434–61

    CAS  Google Scholar 

  201. Rodriguez-Cerrato V, Ghaffar F, Saavedra J, et al. BMS-284756 in experimental cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother 2001; 45: 3098–103

    Article  CAS  PubMed  Google Scholar 

  202. Cottagnoud P, Acosta F, Cottagnoud M, et al. Gemifloxacin is efficacious against penicillin-resistance and quinolone-resistant pneumococci in experimental meningitis. Antimicrob Agents Chemother 2002; 46: 1607–9

    Article  CAS  PubMed  Google Scholar 

  203. Smirnov A, Wellmer A, Gerber J, et al. Gemifloxacin is effective in experimental pneumococcal meningitis. Antimicrob Agents Chemother 2000; 44: 767–70

    Article  CAS  PubMed  Google Scholar 

  204. Fish DN, North DS. Gatifloxacin, an advanced 8-methoxy fluoroquinolone. Pharmacotherapy 2001; 21: 35–59

    Article  CAS  PubMed  Google Scholar 

  205. Ohnishi H, Tanimura H, Ichimiya G. Excretion of levofloxacin into bile and gallbladder tissue [abstract]. Drugs 1993; 45 Suppl. 3: 260–1

    Article  Google Scholar 

  206. Wise R. A review of the clinical pharmacology of moxifloxacin, a new 8-methoxy quinolone and its potential relationship to therapeutic efficacy. Clin Drug Invest 1999; 17: 365–87

    Article  CAS  Google Scholar 

  207. Johnson DM, Cooper MA, Andrews JM, et al. Pharmacokinetics and inflammatory fluid penetrations of sparfloxacin. Antimicrob Agents Chemother 1992; 36: 2444–6

    Article  CAS  PubMed  Google Scholar 

  208. Wise R, Gee G, Marshall G, et al. Single-dose pharmacokinetics and penetration of BMS 284756 into an inflammatory exudate. Antimicrob Agents Chemother 2002; 46: 242–4

    Article  CAS  PubMed  Google Scholar 

  209. Gee T, Andrews JM, Ashby JP, et al. Pharmacokinetics and tissue penetration of gemifloxacin following a single oral dose. J Antimicrob Chemother 2001; 47: 431–4

    Article  CAS  PubMed  Google Scholar 

  210. Wise R, Andrews JM, Ashby JB, et al. A study to determine the pharmacokinetics and inflammatory fluid penetration of gatifloxacin following a single oral dose. J Antimicrob Chemother 1999; 44: 701–4

    Article  CAS  PubMed  Google Scholar 

  211. Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother 1999; 43: 2345–9

    CAS  PubMed  Google Scholar 

  212. Wise R, Andrews JM, Marshall G, et al. Pharmacokinetics and inflammatory-fluid penetration of moxifloxacin following oral or intravenous administration. Antimicrob Agents Chemother 1999; 43: 1508–10

    CAS  PubMed  Google Scholar 

  213. Rodvold K, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy 2001; 21: 233S–52S

    Article  CAS  PubMed  Google Scholar 

  214. Naber CK, Steghafner M, Kinzig-Schippers M, et al. Concentrations of gatifloxacin in plasma and urine and penetration into prostatic and seminal fluid, ejaculate, and sperm cells after single oral administrations of 400 milligrams to volunteers. Antimicrob Agents Chemother 2001; 45: 293–7

    Article  CAS  PubMed  Google Scholar 

  215. Wise R, Honeybourne D. A review of the penetration of sparfloxacin into the lower respiratory tract and sinuses. J Antimicrob Chemother 1996; 37 Suppl. A: 57–63

    Article  CAS  PubMed  Google Scholar 

  216. Andrews J, Honeybourne D, Jevons G, et al. Concentrations of garenoxacin in plasma, bronchial mucosa, alveolar macrophages and epithelial lining fluid following a single oral 600mg dose in healthy adult subjects. J Antimicrob Chemother 2003; 51: 727–30

    Article  CAS  PubMed  Google Scholar 

  217. Nakashima M, Uematsu T, Kosuge K, et al. Single and multiple dose pharmacokinetics of AM-1155, a new 6-fluoro-8-methoxy quinolone in humans. Antimicrob Agents Chemother 1995; 39: 2635–40

    Article  CAS  PubMed  Google Scholar 

  218. Andrews J, Honeyboume D, Jevons G, et al. Concentration of levofloxacin (HR 355) in the respiratory tract following a single dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1997; 40: 573–7

    Article  CAS  PubMed  Google Scholar 

  219. Andrews J, Honeybourne D, Jevons G. Penetration of BAY 12-8039 into bronchial mucosa epithelial lining. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 24–27; San Diego (CA)

  220. Soman A, Honeybourne D, Andrews J, et al. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400mg dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1999; 44: 835–8

    Article  CAS  PubMed  Google Scholar 

  221. Simon S, Sampol E, Albanese J, et al. Population pharmacokinetics of moxifloxacin in plasma and bronchial secretions in patients with severe bronchopneumonia. Clin Pharmacol Ther 2003; 43: 353–63

    Article  CAS  Google Scholar 

  222. Bello A, Farmer J, O’Mara E, et al. Pharmacokinetics and disposition of garenoxacin in healthy adult male subjects. American Society of Hospital Pharmacists (ASHP) Midyear Clinical Meeting; 2002. Chicago (IL): ASHP, 2002

    Google Scholar 

  223. Allen A, Bygate E, Clark D, et al. The effect of food on the bioavailability of oral gemifloxacin in healthy volunteers. 3rd European Congress of Chemotherapy; Madrid, Spain. Chicago (IL): American Society of Hospital Pharmacists (ASHP), 2000

    Google Scholar 

  224. Van Wart S, Phillips L, Ludwig EA, et al. Population pharmacokinetics and pharmacodynamics of garenoxacin in patients with community-acquired respiratory tract infections. Antimicrob Agents Chemother 2004; 48: 4766–77

    Article  PubMed  CAS  Google Scholar 

  225. Goodwin SD, Gallis HA, Chow AT, et al. Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1994; 38: 799–804

    Article  CAS  PubMed  Google Scholar 

  226. Paladino JA, Callen WA. Fluoroquinolone benchmarking in relation to pharmacokinetic and pharmacodynamic parameters. J Antimicrob Chemother 2003; 51: 43–7

    Article  CAS  PubMed  Google Scholar 

  227. Dalhoff A, Schmitz FJ. In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur J Clin Microbiol Infect Dis 2003; 22: 203–21

    CAS  PubMed  Google Scholar 

  228. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26: 1–12

    Article  CAS  PubMed  Google Scholar 

  229. Dalhoff A. Pharmacokinetics of fluoroquinolones. J Antimicrob Chemother 1999; 43: 51–9

    Article  CAS  PubMed  Google Scholar 

  230. Blaser J, Stone BB, Groner MC, et al. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotics peak concentration to MIC for bacterial activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60

    Article  CAS  PubMed  Google Scholar 

  231. Hershberger E, Rybak MJ. Activities of trovafloxacin, gatifloxacin, clinafloxacin, sparfloxacin, levofloxacin, and ciprofloxacin against penicillin-resistant Streptococcus pneumoniae in an in vitro infection model. J Antimicrob Chemother 2000; 44: 598–601

    Article  CAS  Google Scholar 

  232. Forrest A, Chodosh S, Amantea MA, et al. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40: 45–57

    Article  CAS  PubMed  Google Scholar 

  233. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37: 1073–81

    Article  CAS  PubMed  Google Scholar 

  234. Tran JQ, Ballow CH, Forrest A, et al. Comparison of the abilities of grepafloxacin and clarithromycin to eradicate potential bacterial pathogens from the sputa of patients with chronic bronchitis: influence of pharmacokinetic and pharmacodynamic variables. J Antimicrob Chemother 2000; 45: 9–17

    Article  CAS  PubMed  Google Scholar 

  235. Thomas KS, Forrest A, Bhavnani SM, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42: 521–7

    CAS  PubMed  Google Scholar 

  236. Lister PD, Sanders CC. Pharmacodynamics of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. J Antimicrob Chemother 1999; 43: 1118–23

    Article  CAS  Google Scholar 

  237. Boswell FJ, Andrews JM, Rise R. Pharmacodynamic properties of BAY 12-8039 on Gram positive and Gram negative organisms as demonstrated by studies of time-kill kinetics and postantibiotic effect. Antimicrob Agents Chemother 1997; 41: 1377–9

    CAS  PubMed  Google Scholar 

  238. Mackenzie FM, Gould IM. The post-antibiotic effect. J Antimicrob Chemother 1993; 32: 519–37

    Article  CAS  PubMed  Google Scholar 

  239. Pankuch GA, Jacobs MR, Appelbaum PC. Post-antibiotic and post-antibiotic subMIC effect of gatifloxacin against Gram-positive and Gram-negative bacteria [abstract no. 538]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29. San Francisco (CA): American Society for Microbiology (ASM), 1999: 1377–9

    Google Scholar 

  240. Bowker KE, Wooton M, Rogers CA, et al. Comparison of In vitro pharmacodynamics of once and twice daily ciprofloxacin. J Antimicrob Chemother 1999; 44: 661–7

    Article  CAS  PubMed  Google Scholar 

  241. Blondeau JM, Xilin A, Hansen G, et al. A mutant prevention concentration of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45(2): 433–8

    Article  CAS  PubMed  Google Scholar 

  242. DeAbate CA, McIvor RA, Elvaine P, et al. Gatifloxacin vs cefuroxime axetil in patients with acute exacerbations of chronic bronchitis. J Respir Dis 1999; 20: S23–9

    Google Scholar 

  243. Ramirez A, Molina J, Holmann A, et al. Gatifloxacin treatment in patients with acute exacerbations of chronic bronchitis: clinical trial results. J Respir Dis 1999; 20 Suppl.: S30–9

    Google Scholar 

  244. Anzueto A, Gotfried M, Wilder MA, et al. Efficacy and tolerability of gatifloxacin in community treatment of acute exacerbations of chronic bronchitis. Clin Ther 2002; 24(6): 906–17

    Article  CAS  PubMed  Google Scholar 

  245. Fogarty C, McAdoo MA, Paster R, et al. Gatifloxacin vs clarithromycin in the management of acute sinusitis. J Respir Dis 1999; 20 Suppl. 2: S17–22

    Google Scholar 

  246. Lopez-Sisniega JA, Jones RW, Kaminszczik G, et al. Treating acute, uncomplicated bacterial sinusitis with gatifloxacin. J Respir Dis 1999; 20 Suppl. 2: S11–6

    Google Scholar 

  247. Lopez-Sisniega JA, Fogarty C, Dowell ME, et al. Gatifloxacin in the treatment of acute bacterial sinusitis (ABS) in Mexico [abstract]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  248. Fogarty C, Dowell M, Ellison WT, et al. Treating community-acquired pneumonia in hospitalized patients: gatifloxacin vs ceftriaxone/clarithromycin. J Respir Dis 1999; 20 Suppl. 2: S60–9

    Google Scholar 

  249. Ramirez JA, Nguyen T, Tellier G, et al. Treating community-acquired pneumonia with once daily clarithromycin. J Respir Dis 1999; 20 Suppl. 2: S40–8

    Google Scholar 

  250. Sullivan JG, McElroy A, Hansinger RW, et al. Treating community-acquired pneumonia with once-daily gatifloxacin vs once daily levofloxacin. J Respir Dis 1999; 20 Suppl. 2: S49–59

    Google Scholar 

  251. Gotfried M, Quinn TC, Gothelf S, et al. Oral gatifloxacin in outpatient community-acquired pneumonia: results from TeqCES, a community-based, open-label, multicenter study. Diagn Microbiol Infect Dis 2002; 44: 85–91

    Article  CAS  PubMed  Google Scholar 

  252. Correa JC, Badaro R, Bumroongkit C, et al. Randomized, open-label, parallel-group, multicenter study of the efficacy and tolerability of IV gatifloxacin with the option for oral stepdown gatifloxacin versus IV ceftriaxone (with or without erythromycin or clarithromycin) with the option for oral stepdown clarithromycin for treatment of patients with mild to moderate community-acquired pneumonia requiring hospitalization. Clin Ther 2003; 25: 1453–68

    Article  CAS  PubMed  Google Scholar 

  253. Ball P, Wilson R, Mardell LA, et al. Effective short-course therapy of acute exacerbations of chronic bronchitis (AECB) with once daily gemifloxacin [abstractno. M125]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid

  254. Wilson R, Schentag J, Ball P, et al. A comparison of gemifloxacin and clarithromycin in acute exacerbations of chronic bronchitis and long-term clinical outcomes. Clin Ther 2002; 24(4): 639–52

    Article  CAS  PubMed  Google Scholar 

  255. Gehanno P, Poole MD, Wald ER, et al. Efficacy of 7 days of gemifloxacin in patients with acute bacterial sinusitis (ABS) [abstract no. M126]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid

  256. File T, Schlemmer B, Garau J, et al. Efficacy of once daily gemifloxacin in the treatment of community-acquired pneumonia [abstract no. M129]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid

  257. Davies BI, Maesen FP. Clinical effectiveness of levofloxacin in patients with acute purulent exacerbations of chronic bronchitis: the relationship with in-vitro activity. J Antimicrob Chemother 1999; 43: 83–90

    Article  CAS  PubMed  Google Scholar 

  258. DeAbate CA, Russell M, McElvaine P, et al. Safety and efficacy of oral levofloxacin versus cefuroxime axetil in acute bacterial exacerbations of chronic bronchitis. Respir Care 1997; 42(2): 206–13

    Google Scholar 

  259. Shah PM, Maesen FP, Dolmann A, et al. Levofloxacin versus cefuroxime axetil in the treatment of acute exacerbations of chronic bronchitis: results of a randomized, double blind study. J Antimicrob Chemother 1999; 43(4): 529–39

    Article  CAS  PubMed  Google Scholar 

  260. Amsden GW, Baird I, Simon S, et al. Efficacy and safety of azithromycin vs levofloxacin in the outpatient treatment of acute bacterial exacerbations of chronic bronchitis. Chest 2003; 123: 772–7

    Article  CAS  PubMed  Google Scholar 

  261. Tsang KW, Chan WM, Ho PL, et al. A comparative study on the efficacy of levofloxacin and ceftazidime in acute exacerbation of chronic bronchiectasis. Eur Respir J 1999; 14(5): 1206–9

    Article  CAS  PubMed  Google Scholar 

  262. Habib MP, Russell M, DeAbate CA, et al. Multicenter, randomized study comparing efficacy and safety of oral levofloxacin and cefaclor in treatment of acute bacterial exacerbations of chronic bronchitis. Infect Dis Clin Practice 1998; 7: 1–9

    Google Scholar 

  263. Adelglass J, Jones TM, Ruoff G, et al. A multicenter, investigator-blinded, randomized comparison of oral levofloxacin and oral clarithromycin in the treatment of acute bacterial sinusitis. Pharmacotherapy 1998; 18(6): 1255–63

    CAS  PubMed  Google Scholar 

  264. Lasko B, Lau CY, Saint-Pierre C, et al. Efficacy and safety of oral levofloxacin compared with clarithromycin in the treatment of acute sinusitis in adults: a multicenter, double blind, randomized study. J Int Med Res 1998; 26(6): 281–91

    CAS  PubMed  Google Scholar 

  265. Sydnor TA, Kopp EJ, Anthony KE, et al. Open-label assessment of levofloxacin for the treatment of acute bacterial sinusitis in adults. Ann Allergy Asthma Immunol 1998; 80: 357–62

    Article  CAS  PubMed  Google Scholar 

  266. File TM, Segreti J, Dunbar L, et al. A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community acquired pneumonia. Antimicrob Agents Chemother 1997; 41(9): 1965–72

    CAS  PubMed  Google Scholar 

  267. Chodosh S, DeAbate CA, Haverstock D, et al. Short course moxifloxacin therapy for treatment of acute bacterial exacerbations of chronic bronchitis. Respir Med 2000; 94(1): 18–27

    Article  CAS  PubMed  Google Scholar 

  268. Baz MN, Jannetti W, Villanueva C, et al. The efficacy and tolerability of moxifloxacin compared to trovafloxacin in the treatment of acute sinusitis. Today’s Ther Trends 1999; 17(4): 303–9

    Google Scholar 

  269. Burke T, Villanueva C, Mariano H, et al. Moxifloxacin vs cefuroxime axetil in the treatment of acute sinusitis [abstract]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  270. Fogarty C, Ramirez L, DeAbate L, et al. Efficacy and safety of moxifloxacin vs clarithromycin for community acquired pneumonia. Infect Med 1999; 16(11): 748–63

    Google Scholar 

  271. Patel T, Pearl J, Williams J, et al. Efficacy and safety of ten day moxifloxacin 400mg once daily for the treatment of patients with community acquired pneumonia. Respir Med 2000; 94(2): 97–105

    Article  CAS  PubMed  Google Scholar 

  272. Stahlmann R, Forster C, Shakibaei M, et al. Magnesium deficiency induced joint cartilage lesions in juvenile rates which are identical to quinolone-induced arthropathy. Antimicrob Agents Chemother 1995; 39: 2013–20

    Article  CAS  PubMed  Google Scholar 

  273. Kaliq Y, Zhanel GG. Fluoroquinolone associated tendinopathy: a critical review of the literature. Clin Infect Dis 2003; 36: 1404–10

    Article  Google Scholar 

  274. Martin SJ, Jung R, Garvin CG. A risk assessment of levofloxacin in respiratory skin and skin structure and urinary tract infections. Drug Saf 2001; 24: 199–22

    Article  CAS  PubMed  Google Scholar 

  275. Gavin JR, Kubin R, Choudhri S, et al. Moxifloxacin and glucose homeostasis: a pooled-analysis of the evidence from clinical and postmarketing studies. Drug Saf 2004; 27: 671–86

    Article  CAS  PubMed  Google Scholar 

  276. Friedrich LV, Dougherty R. Fatal hypoglycemia associated with levofloxacin. Pharmacotherapy 2004; 24: 1807–12

    Article  PubMed  Google Scholar 

  277. Health Canada. Gatifloxacin (Tequin): hypoglycemia and hyperglycemia. Can Adverse React Newslett 2003; 13(3): 1–2

    Google Scholar 

  278. Nicholson SC, Wilson WR, Naughton BJ, et al. Efficacy and safety of gatifloxacin in elderly outpatients with community acquired pneumonia. Diag Microbiol Infect Dis 2002; 44(1): 117–25

    Article  CAS  Google Scholar 

  279. Nicholson SC, High KP, Gothelf S, et al. Gatifloxacin in community based treatment of acute respiratory tract infections in the elderly. Diag Microbiol Infect Dis 2002; 44(1): 109–16

    Article  CAS  Google Scholar 

  280. Maeda Maeda N, Tamagawa T, Niki I, et al. Increase in insulin release from rat pancreatic islets by quinolone antibiotics. Br J Pharmacol 1996; 11: 372–6

    Article  Google Scholar 

  281. Saraya A, Yokokura M, Gonoi T, et al. Effects of fluoroquinolones on insulin secretion and β-cell ATP sensitive K+ channels. Eur J Pharmacol 2004; 497: 111–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Drs Zhanel, Noreddin, Rubinstein, and Hoban have received research grants from companies making ciprofloxacin, garenoxacin, gatifloxacin, gemifloxacin, levofloxacin, and moxifloxacin. No sources of funding were used to assist in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Zhanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanel, G.G., Fontaine, S., Adam, H. et al. A Review of New Fluoroquinolones. Treat Respir Med 5, 437–465 (2006). https://doi.org/10.2165/00151829-200605060-00009

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00151829-200605060-00009

Keywords

Navigation