Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 7, 2015

Letter. High-pressure aragonite phenocrysts in carbonatite and carbonated syenite xenoliths within an alkali basalt

  • Vratislav Hurai EMAIL logo , Monika Huraiová , Rastislav Milovský , Jarmila Luptáková and Patrik Konečný
From the journal American Mineralogist

Abstract

We describe the first observation of primary magmatic aragonite in carbonatite and carbonated syenite, occurring as xenoliths in a Pliocene basaltic diatreme located near the Hungary-Slovakia border. The aragonite-hosting matrix consists of disordered P-rich calcite, occasionally associated with trachyte glass. We interpret the aragonite growth as evidence of supra-lithostatic overpressure in the magmatic plumbing system that connected the crustal basaltic reservoir with the partial melting zone of the lithospheric mantle, and the disordered calcite ± trachyte as quenched residual, immiscible melts, generated close to the solidus of the carbonated alkali basalt differentiated in the crustal reservoir. The quenching event was a phreato-magmatic eruption within the stability field of the low-pressure calcite; this was triggered by advective overpressure, caused by expanding gas bubbles in a quasiincompressible silicate melt system. The high-pressure, pre-eruption origin of aragonite is indicated by enrichment in 13C compared to the associated calcite interpreted as a record of CO2 degassing at T > 500 °C. The oxygen (δ18O ranges of 22.1-24.5‰ V-SMOW in aragonite, 21.6-22.7‰ in calcite) and carbon (δ13C ranges of -4.4 to -5.9‰ V-PDB in aragonite, -11.9 to -12.7‰ in calcite) isotope signatures are consistent with a degassed carbonatite melt primarily derived from a subduction zone.

Received: 2012-11-23
Accepted: 2013-1-30
Published Online: 2015-3-7
Published in Print: 2013-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.2138/am.2013.4410/html
Scroll to top button