Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 7, 2020

Phase transitions in Ɛ-FeOOH at high pressure and ambient temperature

  • Elizabeth C. Thompson ORCID logo EMAIL logo , Anne H. Davis , Nigel M. Brauser , Zhenxian Liu , Vitali B. Prakapenka and Andrew J. Campbell
From the journal American Mineralogist

Abstract

Constraining the accommodation, distribution, and circulation of hydrogen in the Earth’s interior is vital to our broader understanding of the deep Earth due to the significant influence of hydrogen on the material and rheological properties of minerals. Recently, a great deal of attention has been paid to the high-pressure polymorphs of FeOOH (space groups P21nm and Pnnm). These structures potentially form a hydrogen-bearing solid solution with AlOOH and phase H (MgSiO4H2) that may transport water (OH) deep into the Earth’s lower mantle. Additionally, the pyrite-type polymorph (space group Pa3 of FeOOH), and its potential dehydration have been linked to phenomena as diverse as the introduction of hydrogen into the outer core (Nishi et al. 2017), the formation of ultralow-velocity zones (ULVZs) (Liu et al. 2017), and the Great Oxidation Event (Hu et al. 2016). In this study, the high-pressure evolution of FeOOH was re-evaluated up to ~75 GPa using a combination of synchrotron-based X‑ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and optical absorption spectroscopy. Based on these measurements, we report three principal findings: (1) pressure-induced changes in hydrogen bonding (proton disordering or hydrogen bond symmetrization) occur at substantially lower pressures in Ɛ-FeOOH than previously reported and are unlikely to be linked to the high-spin to low-spin transition; (2) Ɛ-FeOOH undergoes a 10% volume collapse coincident with an isostructural PnnmPnnm transition at approximately 45 GPa; and (3) a pressure-induced band gap reduction is observed in FeOOH at pressures consistent with the previously reported spin transition (40 to 50 GPa).


† Special collection papers can be found online at https://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments and Funding

The authors declare no real or perceived financial conflicts of interest related to this work. Supporting information can be found in the Supplemental Materials[1]. The authors thank M.M. Reagan for providing sample material, which was originally synthesized by A. Suzuki. This work was supported by a National Science Foundation (NSF) EAR Postdoctoral Fellowship under grant EAR-1725673 for E.C.T. and NSF grant EAR-1651017 for A.J.C. The FTIR facilities at the National Synchrotron Light Source is supported by Consortium for Materials Properties Research in Earth Sciences (COMPRES) under NSF Cooperative Agreement EAR-1143050 and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR-1606856 and by GSECARS through NSF grant EAR-1634415 and DOE grant DE-FG02-94ER14466. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. We also thank three anonymous reviewers whose comments helped improve this manuscript.

References cited

Bendeliani, N.A., Baneyeva, M.I., and Poryvkin, D.S. (1972) Synthesis of a new modification of FeO(OH) stable at high pressures. Geokhimiya, 7, 871–873. AN: 020182293.Search in Google Scholar

Birch, F. (1978) Finite strain isotherm and velocities for single crystal and polycrystalline NaCl at high-pressures and 300 K. Journal of Geophysical Research, 83, 1257–1268. doi:10.1029/JB083iB03p01257.10.1029/JB083iB03p01257Search in Google Scholar

Bolfan-Casanova, N., Mackwell, S.J., Keppler, H., McCammon, C.A., and Rubie, D.C. (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: Implications for the storage of water in the Earth’s lower mantle. Geophysical Research Letters, 29(10), 891–894. doi:10.1029/2001GL014457.10.1029/2001GL014457Search in Google Scholar

Bolfan-Casanova, N., Keppler, H., and Rubie, D.C. (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophysical Research Letters, 30(17), 1905. doi:10.1029/2003GL017182.10.1029/2003GL017182Search in Google Scholar

Bolotina, N., Molchanov, V., Dyuzheva, T., Lityagina, L., and Bendeliani, N. (2008) Single-crystal structures of high-pressure phases FeOOH, FeOOD, and GaOOH. Chrystallography Reports, 53, 960. doi:10.1134/S1063774508060084.10.1134/S1063774508060084Search in Google Scholar

Dewaele, A., Torrent, M., Loubeyre, P., and Mezouar M. (2008) Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations. Physical Review B, 78, 104102. doi:10.1103/PhysRevB.78.104102.10.1103/PhysRevB.78.104102Search in Google Scholar

Dixon, J.E., Dixon, T.H., Bell, D.R., and Malservisi, R. (2004) Lateral variation in upper mantle viscosity: Role of water. Earth and Planetary Science Letters, 222, 451–467. doi:10.1016/j.epsl.2004.03.022.10.1016/j.epsl.2004.03.022Search in Google Scholar

Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., and Prakapenka, V. (2007) Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104(22), 9182–9186. doi:10.1073/pnas.0609013104.10.1073/pnas.0609013104Search in Google Scholar

Fujihara, T., Ichikawa, M., Gustafsson, T., Olovsson, I., and Tsuchida, T. (2002) Powder-neutron diffraction studies of geometric isotope and hydrogen-bonding effects in β-CrOOH. Journal of Physics and Chemistry of Solids, 63, 309–315. doi:10.1016/S0022-3697(01)00147-0.10.1016/S0022-3697(01)00147-0Search in Google Scholar

Gleason, A., Jeanloz, R., and Kunz, M. (2008) Pressure-temperature stability studies of FeOOH using X‑ray diffraction. American Mineralogist, 93, 1882–1885. doi:10.2138/am.2008.2942.10.2138/am.2008.2942Search in Google Scholar

Gleason, A., Quiroga, C., Suzuki, A., Pentcheva, R., and Mao, W. (2013) Symmetrization driven spin transition in Ɛ-FeOOH at high pressure. Earth and Planetary Science Letters, 379, 49–55. doi:10.1016/j.epsl.2013.08.012.10.1016/j.epsl.2013.08.012Search in Google Scholar

Hirschmann, M. (2006) Water, melting, and the deep Earth H2O cycle. Annual Review of Earth and Planetary Sciences, 34, 629–653. doi:10.1146/annurev. earth.34.031405.125211.10.1146/annurev.earth.34.031405.125211Search in Google Scholar

Holzapfel, W.B. (1972) On the symmetry of the hydrogen bonds in ice VII. The Journal of Chemical Physics, 56, 712. doi:10.1063/1.1677221.10.1063/1.1677221Search in Google Scholar

Hu, Q., Kim, D., Liu, J., Meng, Y., and Mao, H.-K. (2016) FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen-hydrogen cycles. Nature, 534, 241–245. doi:10.1038/nature18018.10.1038/nature18018Search in Google Scholar PubMed

Hushur, A., Manghnani, M.H., Smyth, J.R., Williams, Q., Hellebrand, E., Lonappan, D., Ye, Y., Dera, P., and Frost, D.J. (2011) Hydrogen bond symmetrization and equation of state of phase D. Journal of Geophysical Research, 116, B06203. doi:10.1029/2010JB008087.10.1029/2010JB008087Search in Google Scholar

Ikeda, O., Sakamaki, T., Ohashi, T., Goto, M., Higo, Y., and Suzuki, A. (2019) Sound velocity measurements of Ɛ-FeOOH up to 24 GPa. Journal of Mineralogical and Petrological Sciences. doi:10.2465/jmps.181115b.10.2465/jmps.181115bSearch in Google Scholar

Jahn, S., Wunder, B., Kock-Müller, M., Tarrieu, L., Pöhle, M., Watenphul, A., and Taran, M. (2012) Pressure-induced hydrogen bond symmetrization in guyanaite, β-CrOOH: Evidence from spectroscopy and ab initio simulations. European Journal of Mineralogy, 24, 839–850. doi:10.1127/0935-1221/2012/0024-2228.10.1127/0935-1221/2012/0024-2228Search in Google Scholar

Kagi, H., Ushijima, D., Iizuka, R., Nakano, S., and Nagai, T. (2008) Micro-pellet method for infrared absorption spectroscopy using a diamond anvil cell under a quasi-hydrostatic condition. High Pressure Research, 28(3), 299–306. doi:10.1080/08957950802346868.10.1080/08957950802346868Search in Google Scholar

Kagi, H., Ushijima, D., Sano-Furukawa, A., Komatsu, K., Iizukam R., Nagai, T., and Nakano, S. (2010) Infrared absorption spectra of δ-AlOOH and its deuteride at high pressure and implication to pressure response of the hydrogen bonds. Journal of Physics: Conference Series, 215, 012052. doi:10.1088/1742-6596/215/1/012052.10.1088/1742-6596/215/1/012052Search in Google Scholar

Karato, S. (2010) Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review. Tectonophysics, 481, 82–98. doi:10.1016/j.tecto.2009.04.011.10.1016/j.tecto.2009.04.011Search in Google Scholar

Keppler, H., Kantor, I., and Dubrovisnky, L. (2007) Optical absorption spectra of ferropericlase to 84 GPa. American Mineralogist, 92, 433–436. doi:10.2138/am.2007.2454.10.2138/am.2007.2454Search in Google Scholar

Kuribayashi, T., Sano-Furukawa, A., and Nagase, T. (2014) Observation of pressure-induced phase transition of δ-AlOOH by using single crystal synchrotron X‑ray diffraction method. Physics and Chemistry of Minerals, 41, 303–312. doi:10.1007/s00269-013-0649-6.10.1007/s00269-013-0649-6Search in Google Scholar

Lin, J.-F., Speaziale, S., Mao, Z., and Marquardt, R. (2013) Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51(2), 244–275. doi:10.1002/rog.20010.10.1002/rog.20010Search in Google Scholar

Liu, J., Hu, Q., Kim, D.Y., Wu, Z., Wang, W., Xiao, Y., Chow, P., Meng, Y., Prakapenka, V.B., Mao, H.-K., and Mao, W.L. (2017) Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature, 551, 494–497. doi:10.1038/nature2446110.1038/nature24461Search in Google Scholar PubMed

Lobanov, S.S., Goncharov, A.F., and Litasov, K.D. (2015) Optical properties of siderite (FeCO3 across the spin transition: Crossover to iron-rich carbonates in the lower mantle. American Mineralogist, 100(5-6), 1059–1064.10.2138/am-2015-5053Search in Google Scholar

Mashino, I., Murakami, M., and Ohtani, E. (2016) Sound velocities of δ-AlOOH up to core-mantle boundary pressures with implications for the seismic anomalies in the deep mantle. Journal of Geophysical Research: Solid Earth, 121, 595–609. doi:10.1002/2015JB012477.10.1002/2015JB012477Search in Google Scholar

Momma, K., and Izumi, F. (2008) VESTA: A three-dimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653–658. doi:10.1107/S0021889808012016.10.1107/S0021889808012016Search in Google Scholar

Nishi, M., Irifune, T., Greaux, S., Tange, Y., and Higo, Y. (2015) Phase transitions of serpentine in the lower mantle. Physics of the Earth and Planetary Interiors, 245, 52–58. doi:10.1016/j.pepi.2015.05.007.10.1016/j.pepi.2015.05.007Search in Google Scholar

Nishi, M., Kuwayama, Y., Tsuchiya, J., and Tsuchiya, T. (2017) The pyrite-type high-pressure form of FeOOH. Nature, 547, 205–208. doi:10.1038/nature22823.10.1038/nature22823Search in Google Scholar PubMed

Ohira, I., Ohtani, E., Sakai, T., Miyahara, M., Hirao, N., Ohishi, Y., and Nishijima, M. (2014) Stability of a hydrous δ-AlOOH-MgSiO2(OH)2 and a mechanism for water transport into the base of lower mantle. Earth and Planetary Science Letters, 401, 12–17. doi:10.1016/j.epsl.2014.05.059.10.1016/j.epsl.2014.05.059Search in Google Scholar

Ohira, I., Jackson, J.M., Solomatova, N.V., Sturhahn, W., Finkelsteinm G.J., Kamada, S., Kawazoe, T., Maeda, F., Hirao, N., Nakano, S., Toellner, T.S., Suzuki, A., and Ohtani, E. (2019) Compressional behavior and spin state of δ-(Al,Fe)OOH at high pressure. American Mineralogist, 104(9), 1273–1284. doi:10.2138/am-2019-6913.10.2138/am-2019-6913Search in Google Scholar

Palot, M., Jacobsen, S.D., Townsend, J.P., Nestola, F., Marquardt, K., Miyajim, N., Harris, J.W., Stachel, T., McCammon, C.A., and Pearson, D.G. (2016) Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos, 265, 237–243. doi:10.1016/j.lithos.2016.06.023.10.1016/j.lithos.2016.06.023Search in Google Scholar

Panero, W.R., Pigott, J.S., Reaman, D.M., Kabbes, J.E., and Liu, Z. (2015) Dry (Mg,Fe)SiO3 perovskite in the Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 100(2), 894–908. doi:https://doi.org/10.1002/2014JB01139710.1002/2014JB011397Search in Google Scholar

Pearson, D.G., Brenker, F.E., Nestola, F., McNeill, J., Nasdala, L., Hutchison, M. T., Matveev, S., Mather, K., Silversmit, G., Schmitz, S., Vekemans, B. and Vincze, L. (2014) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature, 507, 221–224. doi:10.1038/nature1308010.1038/nature13080Search in Google Scholar

Pernet, M., Joubert, J., and Berthet-Colominas, C. (1975) Etude par diffraction neutronique de la forme haute pression de FeOOH. Solid State Communications, 17, 1505–1510. doi:0.1016/0038-1098(75)90983-7.10.1016/0038-1098(75)90983-7Search in Google Scholar

Pinney, N., and Morgan, D. (2013) Ab initio study of structurally bound water at cation vacancy sites in Fe- and Al-oxyhydroxide materials. Geochimica et Cosmochimica Acta, 114, 94–111. doi:10.1016/j.gca.2013.03.032.10.1016/j.gca.2013.03.032Search in Google Scholar

Prescher, C., and Prakapenka, V. (2015) DIOPTAS: A program for reduction of two-dimensional X‑ray diffraction data and data exploration. High Pressure Research, 35(3), 223–230. doi:10.1080/08957959.2015.1059835.10.1080/08957959.2015.1059835Search in Google Scholar

Rivers, M., Prakapenka, V., Kubo, A., Pullins, C., Holl, C., and Jacobsen, S. (2008) The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28, 273–292. doi:10.1080/08957950802333593.10.1080/08957950802333593Search in Google Scholar

Sano, A., Ohtani, E., Kondo, T., Hirao, N., Sakai, T., Sata, N., Ohishi, Y., and Kikegawa, T. (2008) Aluminous hydrous mineral δ-AlOOH as a carrier of hydrogen into the core-mantle boundary. Geophysical Research Letters, 35, L03303. doi:10.1029/2007GL031718.10.1029/2007GL031718Search in Google Scholar

Sano-Furukawa, A., Kagi, H., Nagai, T., Nakano, S., Fukura, S., Ushijim, D., Iizuka, E., and Yagi, T. (2009) Change in compressibility of δ-AlOOD and δ-AlOOH at high pressure: A study of isotope effect and hydrogen-bond symmetrization. American Mineralogist, 94, 1255–1261. doi:10.2138/am.2009.3109.10.2138/am.2009.3109Search in Google Scholar

Sano-Furukawa, A., Yagi, T., Okada, T., Gotou, H., and Kikegawa, T. (2012) Compression behaviors of distorted rutile-type hydrous phases, MOOH (M = Ga, In, Cr) and CrOOD. Physics and Chemistry of Minerals, 39, 375–383. doi:10.1007/s00269-012-0487-y.10.1007/s00269-012-0487-ySearch in Google Scholar

Sano-Furukawa, A., Hattori, T., Komatsu, K., Kagi, H., Nagai, T., Molaison, J.J., dos Santos, A.M., and Tulk, C.A. (2018) Direct observation of symmetrization of hydrogen bond in δ-AlOOH under mantle conditions using neutron diffraction. Scientific Reports, 8, 15520. doi:10.1038/s41598-018-33598-2.10.1038/s41598-018-33598-2Search in Google Scholar PubMed PubMed Central

Sarafian, E., Gaetani, G.A., Hauri, E.H., and Sarafian, A.R. (2017) Experimental constraints on the damp peridotite solidus and oceanic mantle potential temperature. Science, 355(6328), 942–945. doi:10.1126/science.aaj2165.10.1126/science.aaj2165Search in Google Scholar PubMed

Syassen, K. (2012) Computer Code DATLAB, Max Planck Institute, Stuttgart, Germany.Search in Google Scholar

Suzuki, A. (2010) High-pressure X‑ray diffraction study of Ɛ-FeOOH. Physics and Chemistry of Minerals, 37, 153–157. doi:10.1007/s00269-009-0319-x10.1007/s00269-009-0319-xSearch in Google Scholar

Suzuki, A. (2016) Pressure-volume-temperature equation of state of Ɛ-FeOOH to 11 GPa and 700 K. Journal of Mineralogical and Petrological Sciences, 111, 420–424. doi:10.2465/jmps.160719c.10.2465/jmps.160719cSearch in Google Scholar

Thompson, E., Campbell, A., and Tsuchiya, J. (2017) Elasticity of Ɛ-FeOOH: Seismic implications for Earth’s lower mantle. Journal of Geophysical Research: Solid Earth, 122(7), 5038–5047. doi:10.2138/am-2016-5465.10.2138/am-2016-5465Search in Google Scholar

Tschauner, O., Haung, S., Greenberg, E., Prakapenka, V.B., Ma, C., Rossman, G.R., Shen, A.H., Zhang, D., Newville, M., Lanzirotti, A., and Tait, K. (2018) Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle. Science, 359, 1136–1139. doi:10.1126/science.aao3030.10.1126/science.aao3030Search in Google Scholar PubMed

Tsuchiya, J., Tsuchiya, T., and Tsuneyuki, S. (2005) First-principles study of hydrogen bond symmetrization of phase D under high pressure. American Mineralogist, 90, 44–49. doi:10.2138/am.2005.1628.10.2138/am.2005.1628Search in Google Scholar

van der Hilst, R.D., Widiyantoro, S., and Engdahl, E.R. (1997) Evidence for deep mantle circulation from global tomography. Nature, 386, 578–584. doi: 10.1038/386578a0.10.1038/386578a0Search in Google Scholar

van der Meijde, M., Marone, F., Giardini, D., and van der Lee, S. (2003) Seismic evidence for water deep in the Earth’s upper mantle. Science, 300, 1556–1558. doi:10.1126/science.1083636.10.1126/science.1083636Search in Google Scholar PubMed

Vanpeteghem, C.B., Ohtani, E., Kondo, T., Takemura, K., and Kikegawa, T. (2003) Compressibility of phase Egg AlSiO3OH: Equation of state and role of water at high pressure. American Mineralogist, 88, 1408–1411. doi:10.2138/ am-2003–1002.10.2138/Search in Google Scholar

Verma, A.K., Modak, P., and Stixrude, L. (2018) New high pressure phases in MOOH (M = Al, Ga, In). American Mineralogist, 103, 1906–1917. doi:10.2138/am-2018-6634.10.2138/am-2018-6634Search in Google Scholar

Williams, Q., and Guenther, L. (1996) Pressure-induced changes in the bonding and orientation of hydrogen in FeOOH-goethite. Solid State Communications, 100:2, 105–109. doi:10.1016/0038-1098(96)00374-210.1016/0038-1098(96)00374-2Search in Google Scholar

Xu, C., Nishi, M., and Inoue, T. (2019) Solubility behavior of δ-AlOOH and Ɛ-FeOOH at high pressures. American Mineralogist, 104, 1416–1420. doi:10.2138/am-2019-7064.10.2138/am-2019-7064Search in Google Scholar

Xu, W., Greenberg, E., Rozenberg, G., Pasternak, M., Bykova, E., Boffa Ballaran, T., Dubrovinsky, L., Prakapenka, V., Hanfland, M., Vekilova, O., Simak, S., and Abrikosov, I. (2013) Pressure-induced hydrogen bond symmetrization in iron oxyhydroxide. Physical Review Letters, 111(17), 175501. doi:10.1103/PhysRevLett.111.175501.10.1103/PhysRevLett.111.175501Search in Google Scholar PubMed

Received: 2020-02-09
Accepted: 2020-06-10
Published Online: 2020-12-07
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.5.2024 from https://www.degruyter.com/document/doi/10.2138/am-2020-7468/html
Scroll to top button