The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Lack of human relevance for rat developmental toxicity of flumioxazin is revealed by comparative heme synthesis assay using embryonic erythroid cells derived from human and rat pluripotent stem cells
Koji AsanoYasuhiko TakahashiManako UenoTakako FukudaMitsuhiro OtaniSachiko KitamotoYoshitaka Tomigahara
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2022 Volume 47 Issue 4 Pages 125-138

Details
Abstract

Fetal rat anemia from flumioxazin, an N-phenylimide herbicide, is caused by suppression of heme synthesis resulting from inhibition of protoporphyrinogen oxidase (PPO). A series of studies to investigate the effects of flumioxazin have revealed that developmental toxicity is caused in rats but not in rabbits, and the adverse effects are not likely to occur in humans. In this study, as a final weight-of-evidence approach for assessing the human safety of flumioxazin, we compared the toxic potential of inhibition of heme synthesis leading to anemia between human and rat embryonic erythroid cells, which were degenerated as the target of flumioxazin in the rat developmental toxicity. To obtain embryonic erythroid cells, we established respective differentiation methods for embryonic erythroid cells from both human and rat pluripotent stem cells. Derived human and rat embryonic erythroid cells were treated with flumioxazin or dihydroartemisinin (DHA), an anti-malarial drug that causes reduction of embryonic erythroid cells and leads to anemia without species differences. In the human embryonic erythroid cells, DHA inhibited cell proliferation and heme synthesis, whereas there were no effects on heme content or cell proliferation with flumioxazin. In the rat embryonic erythroid cells, however, a dose-related reduction in heme synthesis occurred with treatment of flumioxazin and of DHA. These results confirmed that flumioxazin has no effect on heme synthesis in human embryonic erythroid cells. The present data were in accordance with the results of previous studies and demonstrated that there are no concerns in humans regarding the developmental toxicity of flumioxazin observed in rats.

Content from these authors
© 2022 The Japanese Society of Toxicology
Next article
feedback
Top