Skip to main content
Log in

Microfluidic Paper-based Analytical Devices for Determination of Creatinine in Urine Samples

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Simple, low-cost and portable microfluidic paper-based analytical devices (μPADs) for determination of creatinine in urine samples were developed. The methodology was based on Jaffé reaction between the creatinine and picric acid in alkaline conditions, generating a colorimetric creatinine-alkaline picrate complex. The product exhibits an orange color that is clearly visible on the μPADs. The color intensity of the complex, which is indicative of the concentration of creatinine, is then quantitatively determined using ImageJ software. Various experimental parameters were optimized to achieve the best performance of the μPADs. Under the optimum conditions, a wide linear range was obtained in the range of 0.2–1 mM with a limit of detection and limit of quantitation of 0.08 and 0.26 mM, respectively. The accuracy of the proposed method was in good agreement with the standard Jaffé method. Finally, the developed devices were successfully applied for the determination of creatinine in urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Debus, D. Kirsanov, I. Yaroshenko, A. Sidorova, A. Piven, and A. Legin, Anal. Chim. Acta, 2015, 895, 71.

    Article  CAS  PubMed  Google Scholar 

  2. I. Grabowska, M. Chudy, A. Dybko, and Z. Brzozka, Anal. Chim. Acta, 2005, 540, 181.

    Article  CAS  Google Scholar 

  3. J. Maaten, K. Damman, H. Hillege, S. Bakker, S. Anker, G. Navis, and A. Voors, Clin. Res. Cardiol., 2014, 1.

    Google Scholar 

  4. S. Ko, B. Kim, S. S. Jo, S. Y. Oh, and J. K. Park, Biosens. Bioelectron., 2007, 23, 51.

    Article  CAS  PubMed  Google Scholar 

  5. M. D. Williams, R. Reeves, L. S. Resar, Jr. Jill, and H. Hill Jr., Anal. Bioanal. Chem., 2013, 405, 5013.

    Article  CAS  PubMed  Google Scholar 

  6. R. Kent, V. P. Gopalakrishnan, M. C. Menon, and M. J. Ross, Kidney Int., 2017, 91, 761.

    Article  PubMed  Google Scholar 

  7. E. P. Randviir and C. E. Banks, Sens. Actuators, B, 2013, 183, 239.

    Article  CAS  Google Scholar 

  8. T. Songjaroen, T. Maturos, A. Sappat, A. Tuantranont, and W. Laiwattanapaisal, Anal. Chim. Acta, 2009, 647, 78.

    Article  CAS  PubMed  Google Scholar 

  9. S. Hanif, P. John, W. Gao, M. Saqib, L. Qi, and G. Xu, Biosens. Bioelectron., 2016, 75, 347.

    Article  CAS  PubMed  Google Scholar 

  10. R. Zuo, S. Zhou, Y. Zuo, and Y. Deng, Food Chem., 2015, 182, 242.

    Article  CAS  PubMed  Google Scholar 

  11. E. Liotta, R. Gottardo, L. Bonizzato, J. P. Pascali, A. Bertaso, and F. Tagliaro, Anal. Chim. Acta, 2009, 409, 52.

    CAS  Google Scholar 

  12. E. Szymanska, M. J. Markuszewski, K. Bodzioch, and R. Kaliszan, J. Pharm. Biomed. Anal., 2007, 44, 1118.

    Article  CAS  PubMed  Google Scholar 

  13. X. Li, X. Fang, Z. Yu, G. Sheng, M. Wu, J. Fu, and H. Chen, Anal. Chim. Acta, 2012, 748, 53.

    Article  CAS  PubMed  Google Scholar 

  14. T. Sakai, H. Ohta, N. Ohno, and J. Imai, Anal. Chim. Acta, 1995, 308, 446.

    Article  CAS  Google Scholar 

  15. J. C. Chen, A. S. Kumar, H. H. Chung, S. H. Chien, M. C. Kuo, and J. M. Zen, Sens. Actuators, B, 2006, 115, 473.

    Article  CAS  Google Scholar 

  16. K. K. Reddy and K. V. Gobi, Sens. Actuators, B, 2013, 183, 356.

    Article  CAS  Google Scholar 

  17. S. Yadav, R. Devi, P. Bhar, S. Singhla, and C. S. Pundir, Enzyme Microb. Technol., 2012, 50, 247.

    Article  CAS  PubMed  Google Scholar 

  18. M. T. Alula and J. Yang, Talanta, 2014, 130, 55.

    Article  PubMed  Google Scholar 

  19. M. Zhou, M. H. Yang, and F. M. Zhou, Biosens. Bioelectron., 2014, 55, 39.

    Article  CAS  PubMed  Google Scholar 

  20. X. Chen, J. Chen, F. Wang, X. Xiang, M. Luo, X. Ji, and Z. He, Biosens. Bioelectron., 2012, 35, 363.

    Article  CAS  PubMed  Google Scholar 

  21. G. Dai, J. Hu, Z. Zhao, and P. Wang, Sens. Actuators, B, 2017, 238, 138.

    Article  CAS  Google Scholar 

  22. W. Liu, S. F. Mao, and J. M. Lin, Analyst, 2013, 7, 2163.

    Article  Google Scholar 

  23. M. Su, L. Ge, S. Ge, N. Li, J. Yu, M. Yan, and J. Huang, Anal. Chim. Acta, 2014, 847, 1.

    Article  CAS  PubMed  Google Scholar 

  24. X. X. Yang, O. Forouzan, T. P. Brown, and S. S. Shevkoplyas, Lab Chip, 2012, 12(2), 274.

    Article  CAS  PubMed  Google Scholar 

  25. J. Lu, S. Ge, L. Ge, M. Yan, and J. Yu, Electrochim. Acta, 2012, 80, 334.

    Article  CAS  Google Scholar 

  26. V. Mani, K. Kadimisetty, S. Malla, A. A. Joshi, and J. F. Rusling, J. Environ. Sci. Eng. Technol., 2013, 47, 1937.

    Article  CAS  Google Scholar 

  27. Y. H. Wang, H. M. Wang, S. G. Ge, S. W. Wang, M. Yan, D. J. Zang, and J. H. Yu, Monatsh. Chem., 2014, 145, 129.

    Article  CAS  Google Scholar 

  28. A. W. Martinez, D. S. T. Phillips, D. M. J. Butte, and P. G. M. Whitesides, Angew. Chem., Int. Ed. Engl., 2007, 46, 1318.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Lu, H. Shi, J. Qin, and B. Lin, Anal. Chem., 2010, 82, 329.

    Article  PubMed  Google Scholar 

  30. L. F. Cai, Y. Y. Wu, C. X. Wu, and Z. F. Chen, Chem. Educ., 2013, 90, 232.

    Article  CAS  Google Scholar 

  31. K. Abe, K. Suzuki, and D. Citterio, Anal. Chem., 2008, 80, 6928.

    Article  CAS  PubMed  Google Scholar 

  32. E. Carrilho, S. T. Phillips, S. J. Vella, A. W. Martinez, and G. M. Whitesides, Anal. Chem., 2009, 81, 5990.

    Article  CAS  PubMed  Google Scholar 

  33. C. L. Sones, I. N. Katis, P. J. W. He, B. Mills, M. F. Namiq, P. Shardlow, M. Ibsen, and R. W. Eason, Lab Chip, 2014, 14, 4567.

    Article  CAS  PubMed  Google Scholar 

  34. C. Renault, K. Scida, K. N. Knust, S. E. Fosdick, and R. M. Crooks, J. Electrochem. Sci. Technol., 2013, 4, 146.

    Article  CAS  Google Scholar 

  35. W. Liu, Y. Guo, M. Zhao, H. Li, and Z. Zhang, Anal. Chem., 2015, 87, 7951.

    Article  CAS  PubMed  Google Scholar 

  36. H. Wang, Y. J. Li, J. F. Wei, J. R. Zu, Y. H. Wang, and G. X. Zheng, Anal. Bioanal. Chem., 2014, 406, 2799.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Wang, L. Ge, C. Ma, Q. Kong, M. Yan, S. Ge, and J. Yu, Chem. Eur. J., 2014, 30, 12453.

    Article  Google Scholar 

  38. M. Dou, D. C. Dominguez, X. Li, J. Sanchez, and G. Scott, Anal. Chem., 2014, 86, 7978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. S. Q. Jin, S. M. Guo, P. Zuo, and B. C. Ye, Biosens. Bioelectron., 2015, 63, 379.

    Article  CAS  PubMed  Google Scholar 

  40. K. Talalak, J. Noiphung, T. Songjaroen, O. Chailapakul, and W. Laiwattanapaisal, Talanta, 2015, 144, 915.

    Article  CAS  PubMed  Google Scholar 

  41. J. Sittiwong and F. Unob, Anal. Sci., 2016, 32, 639.

    Article  CAS  PubMed  Google Scholar 

  42. K. G. Blass, R. J. Thibert, and L. K. Lam, J. Clin. Chem. Clin. Biochem., 1974, 12, 336.

    CAS  Google Scholar 

  43. B. D. Toora and G. Rajagopal, Indian J. Exp. Biol., 2002, 40, 352.

    CAS  PubMed  Google Scholar 

  44. K. Syal, A. Srinivasan, and D. Banerjee, Clin. Biochem., 2013, 46, 177.

    Article  CAS  PubMed  Google Scholar 

  45. S. Chutipongtanate and V. Thongboonkerd, Anal. Biochem., 2010, 402, 110.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Electrochemistry and Optical Spectroscopy Center of Excellence (GCE6001723005-1), Department of Chemistry, Chulalongkorn University, and the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University. Also, the authors would like to thank the Thailand Research Fund for the support received through the Research Team Promotion Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narong Praphairaksit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sununta, S., Rattanarat, P., Chailapakul, O. et al. Microfluidic Paper-based Analytical Devices for Determination of Creatinine in Urine Samples. ANAL. SCI. 34, 109–113 (2018). https://doi.org/10.2116/analsci.34.109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.34.109

Keywords

Navigation