Skip to main content
Log in

Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In the present study, we developed a polypropylene well-integrated complementary metal oxide semiconductor (CMOS) platform to perform the loop mediated isothermal amplification (LAMP) technique for real-time DNA amplification and detection simultaneously. An amplification-coupled detection system directly measures the photon number changes based on the generation of magnesium pyrophosphate and color changes. The photon number decreases during the amplification process. The CMOS image sensor observes the photons and converts into digital units with the aid of an analog-to-digital converter (ADC). In addition, UV-spectral studies, optical color intensity detection, pH analysis, and electrophoresis detection were carried out to prove the efficiency of the CMOS sensor based the LAMP system. Moreover, Clostridium perfringens was utilized as proof-of-concept detection for the new system. We anticipate that this CMOS image sensor-based LAMP method will enable the creation of cost-effective, label-free, optical, real-time and portable molecular diagnostic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Mullis, Sci. Am., 1990, 262, 56.

    Article  CAS  PubMed  Google Scholar 

  2. M. A. A. Valones, R. L. Guimaraes, L. A. C. Brandao, P. R. E. D. Souza, A. D. A. T. Carvalho, and S. Crovela, Braz. J. Microbiol., 2009, 40, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Q. Li, J. Liang, G. Luan, Y. Zhang, and K. Wang, Anal. Sci., 2000, 16, 245.

    Article  CAS  Google Scholar 

  4. N. W. Lucchi, A. Demas, J. Narayanan, D. Sumari, A. Kabanywanyi, S. P. Kachur, J. W. Barnwell, and V. Udhayakumar, PLoS One, 2010, 5, e13733

    Article  PubMed  PubMed Central  Google Scholar 

  5. H. D. VanGuilder, K. E. Vrana, and W. M. Freeman, BioTechniques, 2008, 44, 619.

    Article  CAS  PubMed  Google Scholar 

  6. P. Craw and W. Balachandran, Lab Chip, 2012, 12, 2469.

    Article  CAS  PubMed  Google Scholar 

  7. T. Notomi, H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase, Nucleic Acids Res., 2000, 28, e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. Yi, L. Ling, S. B. Neogi, Y. Fan, D. Tang, S. Yamasaki, L. Shi, and L. Ye, Food Control, 2014, 41, 91.

    Article  CAS  Google Scholar 

  9. N. A. Tanner, Y. Zhang, and T. C. Evans, BioTechniques, 2012, 53, 81.

    Article  CAS  PubMed  Google Scholar 

  10. K. Nagamine, T. Hase, and T. Notomi, Mol. Cell. Probes, 2002, 16, 223.

    Article  CAS  PubMed  Google Scholar 

  11. Y. Duan, C. Ge, X. Zhang, J. Wang, and M. Zhou, PLoS One, 2014, 9, e111094

    Article  PubMed  PubMed Central  Google Scholar 

  12. T. D. Rane, L. Chen, H. C. Zec, and T. H. Wang, Lab Chip, 2015, 15, 776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Gansen, A. M. Herrick, I. K. Dimov, L. P. Lee, and D. T. Chiu, Lab Chip, 2012, 12, 2247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. Luo, X. Fang, D. Ye, H. Li, H. Chen, S. Zhang and J. Kong, Biosens. Bioelectron., 2014, 60, 84.

    Article  CAS  PubMed  Google Scholar 

  15. F. Wang, L. Jiang, Q. Yang, W. Prinyawiwatkul, and B. Ge, Appl. Environ. Microbiol., 2012, 78, 2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. S. Xie, Y. Chai, Y. Yuan, L. Bai, and R. Yuan, Biosens. Bioelectron., 2014, 55, 324.

    Article  CAS  PubMed  Google Scholar 

  17. C. Toumazou, L. M. Shepherd, S. C. Reed, G. I. Chen, A. Patel, D. M. Garner, C. J. A. Wang, C. P. Ou, K. A. Desai, P. Athanasiou, H. Bai, I. M. Q. Brizido, B. Caldwell, D. C. Alford, P. Georgiou, K. S. Jordan, J. C. Joyce, M. L. Mura, D. Morley, S. Sathyavruthan, S. Temelso, R. E. Thomas, and L. Zhang, Nat. Methods, 2013, 10, 641.

    Article  CAS  PubMed  Google Scholar 

  18. M. Davenport, A. H. Titus, E. C. Tehan, Z. Tao, Y. Tang, R. M. Bukowski, and F. V. Bright, IEEE Sensors J., 2004, 4, 180.

    Article  CAS  Google Scholar 

  19. G. Giraud, H. Schulze, D. U. Li, T. T. Bachmann, J. Crain, D. Tyndall, J. Richardson, R. Walker, D. Stoppa, E. Charbon, R. Henderson, and J. Arlt, Biomed. Opt. Express, 2010, 1, 1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. H. J. Chao and N. Uzun, IEEE J. Solid-State Circuits, 1992, 27, 1634.

    Article  Google Scholar 

  21. J. Musayev, Y. Adlguzel, H. Kulah, S. Eminoglu, and T. Akln, IEEE Sens. J., 2014, 14, 1608.

    Article  CAS  Google Scholar 

  22. J. P. Devadhasan and S. Kim, BioChip J., 2013, 7, 258.

    Article  CAS  Google Scholar 

  23. J. P. Devadhasan, S. Kim, and C. S. Choi, Analyst, 2013, 138, 5679.

    Article  CAS  PubMed  Google Scholar 

  24. J. P. Devadhasan, M. Shao, and S. Kim, JOLST, 2014, 2, 20.

    Article  Google Scholar 

  25. I. Kaneko, K. Miyamoto, K. Mimura, N. Yumine, H. Utsunomiya, S. Akimoto, and B. A. McClane, Appl. Environ. Microbiol., 2011, 77, 7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. P. Devadhasan, M. Marimuthu, S. Kim, and M. G. Kim, Anal. Bioanal. Chem., 2012, 402, 813.

    Article  CAS  PubMed  Google Scholar 

  27. J. P. Devadhasan and S. Kim, Analyst, 2012, 137, 3917.

    Article  CAS  PubMed  Google Scholar 

  28. J. P. Devadhasan and S. Kim, Anal. Sci., 2012, 28, 875.

    Article  CAS  PubMed  Google Scholar 

  29. C. H. Wang, K. Y. Lien, J. J. Wu, and G. B. Lee, Lab Chip, 2011, 11, 1521.

    Article  CAS  PubMed  Google Scholar 

  30. X. Fang, Y. Liu, J. Kong, and X. Jiang, Anal. Chem., 2010, 82, 3002.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the R&D Program for Society of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea (2013M3C8A3078806 and 2015M3A9E2031372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Devadhasan, J.P., Lee, D.Y. et al. Real-time DNA Amplification and Detection System Based on a CMOS Image Sensor. ANAL. SCI. 32, 653–658 (2016). https://doi.org/10.2116/analsci.32.653

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.653

Keywords

Navigation