Skip to main content
Log in

A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Migrating cells in vivo monitor the physiological state of an organism by integrating the physical as well as chemical cues in the extracellular microenvironment, and alter the migration mode, in order to achieve their unique function. The clarification of the mechanism focusing on the topographical cues is important for basic biological research, and for biomedical engineering specifically to establish the design concept of tissue engineering scaffolds. The aim of this study is to understand how cells sense and respond to the complex topographical cues in vivo by exploring in vitro analyses to complex in vivo situations in order to simplify the issue. Since the intracellular mechanical events at subcellular scales and the way of the coordination of these events are supposed to change in the migrating cells, a key to success of the analysis is a mechanical point of view with a particular focus of the subcellular mechanical events. We designed an experimental platform to explore the mechanical requirements in a migrating fibroma cell responding to micro-grooves. The micro-grooved structure is a model of gap structures, typically seen in the microenvironments in vivo. In our experiment, the contributions of actomyosin force generation can be spatially divided and analyzed in the cell center and peripheral regions. The analysis specified that rapid leading edge protrusion, and the cell body translocation coordinated with the leading edge protrusion are required for the turning response at a micro-groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Friedl and K. Wolf, J. Cell Biol., 2010, 188, 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. P. Lutolf and J. A. Hubbell, Nat. Biotechnol., 2005, 23, 47.

    Article  CAS  PubMed  Google Scholar 

  3. N. A. Kurniawan, P. K. Chaudhuri, and C. T. Lim, J. Biomech., 2016, 49, 1355.

    Article  PubMed  Google Scholar 

  4. K. Wolf and P. Friedl, Trends Cell Biol., 2011, 21, 736.

    Article  CAS  PubMed  Google Scholar 

  5. H. Miyoshi and T. Adachi, Tissue Eng. Part B, 2014, 20, 609.

    Article  CAS  Google Scholar 

  6. A. D. Doyle and K. M. Yamada, Exp. Cell Res., 2016, 343, 60.

    Article  CAS  PubMed  Google Scholar 

  7. J. Nakanishi, Chem.-Asian J., 2014, 9, 406.

    Article  CAS  PubMed  Google Scholar 

  8. A. Ueki and S. Kidoaki, Biomaterials, 2015, 41, 45.

    Article  CAS  PubMed  Google Scholar 

  9. G. Charras and E. Sahai, Nat. Rev. Mol. Cell Biol., 2014, 15, 813.

    Article  CAS  PubMed  Google Scholar 

  10. G. Totsukawa, Y. Wu, Y. Sasaki, D. J. Hartshorne, Y. Yamakita, S. Yamashiro, and F. Matsumura, J. Cell Biol., 2004, 164, 427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. Totsukawa, Y. Yamakita, S. Yamashiro, D. J. Hartshorne, Y. Sasaki, and F. Matsumura, J. Cell Biol., 2000, 150, 797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. L. Gardel, I. C. Schneider, Y. Aratyn-Schaus, and C. M. Waterman, Ann. Rev. Cell Dev. Biol., 2010, 26, 315.

    Article  CAS  Google Scholar 

  13. A. del Rio, R. Perez-Jimenez, R. C. Liu, P. Roca-Cusachs, J. M. Fernandez, and M. P. Sheetz, Science, 2009, 323, 638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Janostiak, A. C. Pataki, J. Brabek, and D. Rosel, Eur. J. Cell Biol., 2014, 93, 445.

    Article  CAS  PubMed  Google Scholar 

  15. T. Vallenius, Open Biol., 2013, 3, 130001.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by PRIME. AMED. and a Grant for Facilitation of Innovation Processes from RIKEN Baton Zone Programs Office. We also thanks the RIKEN BOCC for confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Miyoshi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyoshi, H., Suzuki, K., Ju, J. et al. A Perturbation Analysis to Understand the Mechanism How Migrating Cells Sense and Respond to a Topography in the Extracellular Environment. ANAL. SCI. 32, 1207–1211 (2016). https://doi.org/10.2116/analsci.32.1207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1207

Keywords

Navigation