Skip to main content
Log in

Detection of Pb2+ in Aqueous Solution by Using a DNA-modified Microcantilever

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We developed a novel Pb2+-sensor based on a microcantilever that was modified with a specific Pb2+-dependent DNAzyme molecule. This microcantilever sensor could detect Pb2+ sensitively and selectively in an aqueous solution. Upon complexation with Pb2+, the DNAzyme duplex unwinded and formed a G-quadruplex conformation, which led to an increase of repulsion between the DNAzyme molecules and a subsequent bending of the microcantilever. This microcantilever sensor could be regenerated, flowing through a strong Pb2+ chelator, 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid. The detection limit of the microcantilever sensor for Pb2+ ions is as low as 10−8 M. The microcantilever sensor also exhibited a high selectivity to Pb2+ over other metal ions such as Mg2+, Fe3+, Zn2+, Ca2+, and Cd2+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. W. Czarnik, Acc. Chem. Res., 1994, 27, 302.

    Article  CAS  Google Scholar 

  2. L. Prodi, F. Bolletta, M. Montalti, and N. Zaccheroni, Coord. Chem. Rev., 2000, 205, 59.

    Article  CAS  Google Scholar 

  3. J. Liu, Z. Cao, and Y. Lu, Chem. Rev., 2009, 709, 1948.

    Article  Google Scholar 

  4. R. S. Brown, B. E. Hingerty, J. C. Dewan, and A. Klug, Nature, 1983, 303, 543.

    Article  CAS  PubMed  Google Scholar 

  5. U. E. P. Agency, “Identifying Lead Hazards in Your Home, EPA-747-F-96 007”, 1996, Washington, D.C.

    Google Scholar 

  6. WHO, “Guidelines for Drinking-water Quality”, 4th ed., 2011.

    Google Scholar 

  7. The Council of The European Union, “On the Quality of Water Intended for Human Consumption”, 1998, Official Journal of the European Communities Council Directive 98/83/EC.

    Google Scholar 

  8. M. Ghaedi, A. Shokrollahi, K. Niknam, E. Niknam, A. Najibi, and M. Soylak, J. Hazard. Mater., 2009, 168, 1022.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Dong, W. Tian, S. Ren, R. Dai, Y. Chi, and G. Chen, ACS Appl. Mat. Interfaces, 2014, 6, 1646.

    Article  CAS  Google Scholar 

  10. D. D. Afonso, S. Baytak, and Z. Arslan, J. Anal. At. Spectrom., 2010, 25, 726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. Yilmaz, Z. Arslan, and L. Rose, Anal. Chim. Acta, 2013, 761, 18.

    Article  CAS  PubMed  Google Scholar 

  12. D. Vantelon, A. Lanzirotti, A. C. Scheinost, and R. Kretzschmar, Environ. Sci. Technol., 2005, 39, 4808.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Izumi, F. Kiyotaki, T. Minato, and Y. Seida, Anal. Chem., 2002, 74, 3819.

    Article  CAS  PubMed  Google Scholar 

  14. N. Matsuura, D. J. Elliot, D. Neil Furlong, and F. Grieser, Colloids Surf., A, 1997, 126, 189.

    Article  CAS  Google Scholar 

  15. T. Thundat, R. J. Warmack, G. Y. Chen, and D. P. Allison, Appl. Phys. Lett., 1994, 64, 2894.

    Article  CAS  Google Scholar 

  16. G. Y. Chen, T. Thundat, E. A. Wachter, and R. J. Warmack, J. Appl. Phys., 1995, 77, 3618.

    Article  CAS  Google Scholar 

  17. T. Thundat, G. Y. Chen, R. J. Warmack, D. P. Allison, and E. A. Wachter, Anal. Chem., 1995, 67, 519.

    Article  CAS  Google Scholar 

  18. Y. Yang, H.-F. Ji, and T. Thundat, J. Am. Chem. Soc., 2003, 125, 1124.

    Article  CAS  PubMed  Google Scholar 

  19. K. M. Goeders, J. S. Colton, and L. A. Bottomley, Chem. Rev., 2008, 108, 522.

    Article  CAS  PubMed  Google Scholar 

  20. W. Shu, D. Liu, M. Watari, C. K. Riener, T. Strunz, M. E. Welland, S. Balasubramanian, and R. A. McKendry, J. Am. Chem. Soc., 2005, 127, 17054.

    Article  CAS  PubMed  Google Scholar 

  21. J. Liu and Y. Lu, J. Am. Chem. Soc., 2003, 125, 6642.

    Article  CAS  PubMed  Google Scholar 

  22. J. Liu and Y. Lu, J. Am. Chem. Soc., 2004, 126, 12298.

    Article  CAS  PubMed  Google Scholar 

  23. Z. D. Wang, J. H. Lee, and Y. Lu, Adv. Mater., 2008, 20, 3263.

    Article  CAS  Google Scholar 

  24. J. Li and Y. Lu, J. Am. Chem. Soc., 2000, 122, 10466.

    Article  CAS  Google Scholar 

  25. T. S. Dalavoy, D. P. Wernette, M. Gong, J. V. Sweedler, Y. Lu, B. R. Flachsbart, M. A. Shannon, P. W. Bohn, and D. M. Cropek, Lab Chip, 2008, 8, 786.

    Article  CAS  PubMed  Google Scholar 

  26. H. Wang, Y. Kim, H. Liu, Z. Zhu, S. Bamrungsap, and W. Tan, J. Am. Chem. Soc., 2009, 131, 8221.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Xiao, A. A. Rowe, and K. W. Plaxco, J. Am. Chem. Soc., 2007, 129, 262.

    Article  CAS  PubMed  Google Scholar 

  28. L. Shen, Z. Chen, Y. Li, S. He, S. Xie, X. Xu, Z. Liang, X. Meng, Q. Li, Z. Zhu, M. Li, X. C. Le, and Y. Shao, Anal. Chem., 2008, 80, 6323.

    Article  CAS  PubMed  Google Scholar 

  29. J. Elbaz, B. Shlyahovsky, and I. Willner, Chem. Commun., 2008, 13, 1569.

    Article  Google Scholar 

  30. Y. Xiang, A. Tong, and Y. Lu, J. Am. Chem. Soc., 2009, 131, 15352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. T. Li, S. Dong, and E. Wang, J. Am. Chem. Soc., 2010, 132, 13156.

    Article  CAS  PubMed  Google Scholar 

  32. T. Li, E. Wang, and S. Dong, Anal. Chem., 2010, 82, 1515.

    Article  CAS  PubMed  Google Scholar 

  33. H.-F. Ji, T. Thundat, R. Dabestani, G. M. Brown, P. F. Britt, and P. V. Bonnesen, Anal. Chem., 2001, 73, 1572.

    Article  CAS  PubMed  Google Scholar 

  34. H. F. Ji, R. Dabestani, E. Finot, T. Thundat, G. M. Brown, and P. F. Britt, Chem. Commun., 2000, 457.

    Google Scholar 

  35. J. Kypr, I. Kejnovska, D. Renciuk, and M. Vorlickova, Nucleic Acids Res., 2009, 37, 1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. I. Smirnov and R. H. Shafer, J. Mol. Biol., 2000, 296, 1.

    Article  CAS  PubMed  Google Scholar 

  37. T. Li, E. Wang, and S. Dong, J. Am. Chem. Soc., 2009, 737, 15082.

    Article  Google Scholar 

  38. P. R. Majhi and R. H. Shafer, Biopolymers, 2006, 82, 558.

    Article  CAS  PubMed  Google Scholar 

  39. R. F. Pasternack, E. J. Gibbs, and J. J. Villafranca, Biochemistry, 1983, 22, 2406.

    Article  CAS  PubMed  Google Scholar 

  40. M. Tabata, A. Kumar Sarker, and E. Nyarko, J. Inorg. Biochem., 2003, 94, 50.

    Article  CAS  PubMed  Google Scholar 

  41. M. F. Cabral, J. Costa, R. Delgado, J. J. R. F. Dasilva, and M. F. Vilhena, Polyhedron, 1990, 9, 2847.

    Article  CAS  Google Scholar 

  42. C. G. Pippin, T. J. McMurry, M. W. Brechbiel, M. McDonald, R. Lambrecht, D. Milenic, M. Roselli, D. Colcher, and O. A. Gansow, Inorg. Chim. Acta, 1995, 239, 43.

    Article  CAS  Google Scholar 

  43. J. Pan and S. Zhang, J. Biol. Inorg. Chem., 2009, 74, 401.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful for financial support from the National Science Foundation of China (Grant Nos. 20732007, 20920102033, and 20972171), the Ministry of Science and Technology of China (Grant Nos. 2007CB808004, 2007CB936001, and 2009CB22008), and the Bureau for Basic Research of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Chen or Hai-Feng Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, RP., Xing, LB., Wang, XJ. et al. Detection of Pb2+ in Aqueous Solution by Using a DNA-modified Microcantilever. ANAL. SCI. 32, 1065–1069 (2016). https://doi.org/10.2116/analsci.32.1065

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.32.1065

Keywords

Navigation