Skip to main content
Log in

Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A One-step technique for depositing gold nanoclusters (GNCs) onto the surface of a glassy carbon (GC) plate was developed by using pulse laser deposition (PLD) with appropriate process parameters. The method is simple and clean without using any templates, surfactants, or stabilizers. The experimental factors (pulse laser number and the pressure of inert gas (Ar)) that affect the morphology and structure of GNCs, and thus affect the electrocatalytic oxidation performance towards glucose were systematically investigated by means of transmission electron microscopy (TEM) and electrochemical methods (cyclic voltammograms (CV) and chronoamperometry methods). The GC electrode modified by GNCs exhibited a rapid response time (about 2 s), a broad linear range (0.1 to 20 mM), and good stability. The sensitivity was estimated to be 31.18 μA cm−2 mM 1 (vs. geometric area), which is higher than that of the Au bulk electrode. It has a good resistance to the common interfering species, such as ascorbic acid (AA), uric acid (UA) and 4-acetaminophen (AP). Therefore, this work has demonstrated a simple and effective sensing platform for the nonenzymatic detection of glucose, and can be used as a new material for a novel non-enzymatic glucose sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Boss, E. Meurville, J. M. Sallese, P. Ryser, Biosens. Bioelectron., 2011, 30, 223.

    Article  CAS  PubMed  Google Scholar 

  2. E. H. Yoo and S. Y. Lee, Sensors, 2010, 70, 4558.

    Google Scholar 

  3. P. Rossetti, J. Bondia, J. Vehi, C. G. Fanelli, Sensors (Basel), 2010, 70, 10936.

    Article  Google Scholar 

  4. M. M. Rahman, A. J. Ahammad, J. H. Jin, S. J. Ahn, J. J. Lee, Sensors (Basel), 2010, 70, 4855.

    Article  Google Scholar 

  5. A. Heller and B. Feldman, Chem. Rev., 2008, 708, 2482.

    Google Scholar 

  6. C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Anal. Chem., 2009, 87, 2378.

    Article  Google Scholar 

  7. L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 2009, 87, 7271.

    Article  Google Scholar 

  8. P. Zhang, L. Zhang, G. Zhao, F. Feng, Microchim. Acta, 2011, 776, 411.

    Google Scholar 

  9. S. Zhang, Y. Shao, G. Yin, Y. Lin, Angew. Chem., Int, Ed. Engl., 2010, 49, 2211.

    Article  CAS  PubMed  Google Scholar 

  10. S. Imamova, N. Nedyalkov, A. Dikovska, P. Atanasov, M. Sawczak, R. Jendrzejewski, G. Sliwiñski, M. Obara, Appl. Surf. Sci., 2010, 257, 1075.

    Article  CAS  Google Scholar 

  11. G. Chang, M. Oyama, K. Hirao, J. Phys. Chem. B, 2006, 770, 20362.

    Article  Google Scholar 

  12. M. C. Daniel and D. Astruc, Chem. Rev., 2004, 704, 293.

    Google Scholar 

  13. N. R. Agarwal, F. Neri, S. Trusso, A. Lucotti, P. M. Ossi, Appl. Surf. Sci., 2012, 258, 9148.

    Article  CAS  Google Scholar 

  14. T. M. Cheng, T. K. Huang, H. K. Lin, S. P. Tung, Y. L. Chen, C. Y. Lee, H.-S. Chiu, ACS Appl. Mater. Interfaces, 2010, 2, 2773.

    Article  CAS  PubMed  Google Scholar 

  15. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, R. P. Van Duyne, Future Medicine, 2006, 7, 219.

    Google Scholar 

  16. C. H. Wang, Y. Y. Song, J. W. Zhao, X. H. Xia, Surf. Sci., 2006, 600, 38.

    Article  Google Scholar 

  17. W. Cheng, S. Dong, E. Wang, Langmuir, 2002, 78, 9947.

    Article  Google Scholar 

  18. J. W. Son, S. S. Orlov, B. Phillips, L. Hesselink, J. Electroceram., 2006, 77, 591.

    Article  Google Scholar 

  19. R. R. Mohanta, V. R. R. Medicherla, K. L. Mohanta, N. C. Nayak, S. Majumder, V. Solanki, S. Varma, K. Bapna, D. M. Phase, V. Sathe, Appl. Surf. Sci., 2015, 325, 185.

    Article  CAS  Google Scholar 

  20. T. Donnelly, S. Krishnamurthy, K. Carney, N. McEvoy, J. G. Lunney, Appl. Surf. Sci., 2007, 254, 1303.

    Article  CAS  Google Scholar 

  21. M. A. Majeed Khan, S. Kumar, M. Ahamed, Mater. Sci. Semicond. Process., 2015, 30, 169.

    Article  CAS  Google Scholar 

  22. R. Dolbec, E. Irissou, M. Chaker, D. Guay, F. Rosei, M. El Khakani, Phys. Rev. B, 2004, 70, 201406.

    Article  Google Scholar 

  23. J. Gonzalo, A. Perea, D. Babonneau, C. Afonso, N. Beer, J. P. Barnes, A. K. Petford-Long, D. E. Hole, P. D. Townsend, Phys. Rev. B, 2005, 77, 125420.

    Article  Google Scholar 

  24. R. S. C. N. Afonso, J. M. Ballesteros, A. K. Petford-Long, R. C. Doole, Appl. Surf. Sci., 1998, 727-729, 339.

    Article  Google Scholar 

  25. T. Sasaki, N. Koshizaki, K.M. Beck, Appl. Phys. A, 1999, 69, 771.

    Article  Google Scholar 

  26. J. Warrender and M. Aziz, Phys. Rev. B, 2007, 75, 085433.

    Article  Google Scholar 

  27. E. Fazio, F. Neri, P. M. Ossi, N. Santo, S. Trusso, Appl. Surf. Sci., 2009, 255, 9676.

    Article  CAS  Google Scholar 

  28. E. Irissou, B. Le Drogoff, M. Chaker, D. Guay, Appl. Phys., 2003, 94, 4796.

    Article  CAS  Google Scholar 

  29. D. K. T. Ng, B. S. Bhola, R. M. Bakker, S. T. Ho, Adv. Funct. Mater., 2011, 27, 2587.

    Article  Google Scholar 

  30. E. Irissou, B. Le Drogoff, M. Chaker, D. Guay, Appl. Phys. Lett., 2002, 80, 1716.

    Article  CAS  Google Scholar 

  31. D. Riabinina, E. Irissou, B. Le Drogoff, M. Chaker, D. Guay, Appl. Phys., 2010, 708, 034322.

    Article  Google Scholar 

  32. D. Riabinina, M. Chaker, F. Rosei, Appl. Phys. Lett., 2006, 89, 131501.

    Article  Google Scholar 

  33. G. Chang, J. Zhang, M. Oyama, K. Hirao, Phys. Chem. B, 2005, 709, 1204.

    Article  Google Scholar 

  34. G. Chang, M. Oyama, K. Hirao, Phys. Chem. B, 2006, 770, 1860.

    Article  Google Scholar 

  35. S. Hrapovic, Y. L. Liu, K. B. Male, J. H. T. Luong, Anal. Chem., 2004, 76, 1083.

    Article  CAS  PubMed  Google Scholar 

  36. R. B. Rakhi, K. Sethupathi, S. Ramaprabhu, Phys. Chem. B, 2009, 773, 3190.

    Article  Google Scholar 

  37. X. M. Chen, Z. J. Lin, D. J. Chen, T. T. Jia, Z. M. Cai, X. R. Wang, X. Chen, G. N. Chen, M. Oyama, Biosens. Bioelectron., 2010, 25, 1803.

    Article  CAS  PubMed  Google Scholar 

  38. J. Ryu, K. Kim, H. S. Kim, H. T. Hahn, D. Lashmore, Biosens. Bioelectron., 2010, 26, 602.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51102085, 61274010, and 51202062), Program for New Century Excellent Talents in University, Ministry of Education of China (NCET-09-0135), Natural Science Foundation of Hubei Province (Nos. 2011CDB057 and 2011CDA81), Science foundation from Hubei Provincial Department of Education (No. Q20111002), Wuhan Municipal academic leaders program (200951830550) and the Plan of Youth Science and technology, Wuhan City (2014072704011250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Chang, G., Wang, Z. et al. Pulse Laser Deposition Fabricating Gold Nanoclusters on a Glassy Carbon Surface for Nonenzymatic Glucose Sensing. ANAL. SCI. 31, 609–616 (2015). https://doi.org/10.2116/analsci.31.609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.609

Keywords

Navigation