Skip to main content
Log in

Length Discrimination of Homo-oligomeric Nucleic Acids with Single-molecule Measurement

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Single-molecule DNA/RNA sequencing based on single-molecule measurement is a prominent method for higher throughput sequencing. In a previous report, the single-molecule DNA/RNA sequencing method has applied to detect each base-conductance difference in the tunneling current time profiles, and determined the sequence. However, discrimination of identical base lengths has not yet been achieved. The number of the identical contiguous bases has importance in biology because some homopolymers of nucleic acid control gene expression. In this study, we aimed to develop a method for discriminating the length of homopolymer of nucleic acids of adenosine monophosphate (AMP) using a single-molecule sequencing technique. We carried out single-molecule conductance measurements of adenine pentamer, hexamer and heptamer. The single-molecule signals of the oligomers are not distinguishable from current and duration time histograms. The three oligomers were discriminated by our developed machine learning-based analysis with accuracy of 0.54 for a single signal, and 99% for 40 signals. This method will be applied to the single signals and identify the contiguous bases in the sequence and provide new biological insights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Heather and B. Chain, Genomics, 2016, 107, 1.

    Article  CAS  PubMed  Google Scholar 

  2. M. Zwolak and M. Di Ventra, Nano Lett., 2005, 5, 421.

    Article  CAS  PubMed  Google Scholar 

  3. J. Lagerqvist, M. Zwolak, and M. Di Ventra, Nano Lett., 2006, 6, 779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Di Ventra and M. Taniguchi, Nat. Nanotechnol., 2016, 11, 117.

    Article  CAS  PubMed  Google Scholar 

  5. T. Ohshiro, M. Tsutsui, K. Yokota, and M. Taniguchi, Sci. Rep., 2018, 8, 1.

    Article  CAS  Google Scholar 

  6. T. Ohshiro, K. Matsubara, M. Tsutsui, M. Furuhashi, M. Taniguchi, and T. Kawai, Sci. Rep., 2012, 2, 501.

    Article  PubMed  PubMed Central  Google Scholar 

  7. R. H. M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. v van Hemert, and J. M. Van Ruitenbeek, Nature, 2002, 419, 906.

    Article  CAS  PubMed  Google Scholar 

  8. M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science, 1997, 278, 252.

    Article  CAS  Google Scholar 

  9. C. A. Martin, D. Ding, H. S. J. Van Der Zant, and J. M. Van Ruitenbeek, New J. Phys., 2008, 10, 65008.

    Article  Google Scholar 

  10. M. Tsutsui, M. Taniguchi, K. Yokota, and T. Kawai, Nat. Nanotechnol., 2010, 5, 286.

    Article  CAS  PubMed  Google Scholar 

  11. T. Ohshiro, Y. Komoto, M. Konno, J. Koseki, A. Asai, H. Ishii, and M. Taniguchi, Sci. Rep., 2019, 9, 1.

    Article  CAS  Google Scholar 

  12. A. O. Subtelny, S. W. Eichhorn, G. R. Chen, H. Sive, and D. P. Bartel, Nature, 2014, 508, 66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. L. Weill, E. Belloc, F. A. Bava, and R. Méndez, Nat. Struct. Mol. Biol., 2012, 19, 577.

    Article  CAS  PubMed  Google Scholar 

  14. L. J. A. Macedo, E. N. Miller, and A. Opdahl, Anal. Chem., 2017, 89, 1757.

    Article  CAS  PubMed  Google Scholar 

  15. W. W. Wang, X. Han, and L. Q. Chu, Anal. Sci., 2019, 19P110.

    Google Scholar 

  16. C. Y. Lee, P. Gong, G. M. Harbers, D. W. Grainger, D. G. Castner, and L. J. Gamble, Anal. Chem., 2006, 78, 3316.

    Article  CAS  PubMed  Google Scholar 

  17. H. B. Michaelson, J. Appl. Phys., 1977, 48, 4729.

    Article  CAS  Google Scholar 

  18. Y. Komoto, T. Ohshiro, T. Yoshida, E. Tarusawa, T. Yagi, T. Washio, and M. Taniguchi, Sci. Rep., 2020, 10, 1.

    Article  Google Scholar 

  19. M. Taniguchi, T. Ohshiro, Y. Komoto, T. Takaai, T. Yoshida, and T. Washio, J. Phys. Chem. C, 2019, 123, 15867.

    Article  CAS  Google Scholar 

  20. C. Elkan and K. Noto, in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, 213.

    Book  Google Scholar 

  21. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, J. Mach. Learn. Res., 2011, 12, 2825.

    Google Scholar 

  22. G. Yao, H. Pei, J. Li, Y. Zhao, D. Zhu, Y. Zhang, Y. Lin, Q. Huang, and C. Fan, NPG Asia Mater., 2015, 7, e159.

    Article  Google Scholar 

  23. M. L. Bochman, K. Paeschke, and V. A. Zakian, Nat. Rev. Genet., 2012, 13, 770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. X. F. Zhang, H. M. Xu, L. Han, N. B. Li, and H. Q. Luo, Anal. Sci., 2018, 34, 149.

    Article  CAS  PubMed  Google Scholar 

  25. A. K. Mishra and S. Verma, Inorg. Chem., 2010, 49, 8012.

    Article  CAS  PubMed  Google Scholar 

  26. J. Kumar and S. Verma, Inorg. Chem., 2009, 48, 6350.

    Article  CAS  PubMed  Google Scholar 

  27. R. Landauer, Philos. Mag., 1970, 21, 863.

    Article  CAS  Google Scholar 

  28. T. Furuhata, T. Ohshiro, G. Akimoto, R. Ueki, M. Taniguchi, and S. Sando, ACS Nano, 2019, 13, 5028.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Kim, T. Pietsch, A. Erbe, W. Belzig, and E. Scheer, Nano Lett., 2011, 11, 3734.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Komoto, S. Fujii, H. Nakamura, T. Tada, T. Nishino, and M. Kiguchi, Sci. Rep., 2016, 6, 1.

    Article  Google Scholar 

  31. R. Frisenda, M. L. Perrin, H. Valkenier, J. C. Hummelen, and H. S. J. van der Zant, Phys. Status Solidi, 2013, 250, 2431.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masateru Taniguchi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komoto, Y., Ohshiro, T. & Taniguchi, M. Length Discrimination of Homo-oligomeric Nucleic Acids with Single-molecule Measurement. ANAL. SCI. 37, 513–517 (2021). https://doi.org/10.2116/analsci.20SCP13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20SCP13

Keywords

Navigation