Skip to main content
Log in

Bioluminescent Imaging Systems for Assay Developments

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Bioluminescence (BL) is an excellent optical readout platform that has great potential to be utilized in various bioassays and molecular imaging. The advantages of BL-based bioassays include the long dynamic range, minimal background, high signal-to-noise ratios, biocompatibility for use in cell-based assays, no need of external light source for excitation, simplicity in the measurement system, and versatility in the assay design. The recent intensive research in BL has greatly diversified the available luciferase-luciferin systems in the bioassay toolbox. However, the wide variety does not promise their successful utilization in various bioassays as new tools. This is mainly due to complexity and confusion with the diversity, and the unavailability of defined standards. This review is intended to provide an overview of recent basic developments and applications in BL studies, and showcases the bioanalytical utilities. We hope that this review can be used as an instant reference on BL and provides useful guidance for readers in narrowing down their potential options in their own assay designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. C. Shaner, P. A. Steinbach, and R. Y. Tsien, Nat. Methods, 2005, 2, 905.

    Article  CAS  PubMed  Google Scholar 

  2. T. Ozawa, H. Yoshimura, and S. B. Kim, Anal. Chem., 2013, 85, 590.

    Article  CAS  PubMed  Google Scholar 

  3. Q. Li, J. F. Zeng, Q. Q. Miao, and M. Y. Gao, Front. Bioeng. Biotech., 2019, 7, 320.

    Article  Google Scholar 

  4. S. T. Adams and S. C. Miller, FEBS J., 2020, 287, 1369.

    Article  CAS  PubMed  Google Scholar 

  5. A. A. Kotlobay, K. S. Sarkisyan, Y. A. Mokrushina, M. Marcet-Houben, E. O. Serebrovskaya, N. M. Markina, L. G. Somermeyer, A. Y. Gorokhovatsky, A. Vvedensky, K. V. Purtov, V. N. Petushkov, N. S. Rodionova, T. V. Chepurnyh, L. I. Fakhranurova, E. B. Guglya, R. Ziganshin, A. S. Tsarkova, Z. M. Kaskova, V. Shender, M. Abakumov, {etet al.,} Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 12728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. M. Loening, T. D. Fenn, A. M. Wu, and S. S. Gambhir, Protein Eng. Des. Sel., 2006, 19, 391.

    Article  CAS  PubMed  Google Scholar 

  7. A. Novobilsky and J. Hoglund, Exp. Parasitol., 2020, 214, 107905.

    Article  PubMed  Google Scholar 

  8. S. B. Kim, H. Suzuki, M. Sato, and H. Tao, Anal. Chem., 2011, 83, 8732.

    Article  CAS  PubMed  Google Scholar 

  9. C. Wu and T. Kurinomaru, Anal. Sci., 2019, 35, 301.

    Article  CAS  PubMed  Google Scholar 

  10. J. R.. de Wet, K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani, Mol. Cell. Biol., 1987, 7, 725.

    PubMed  PubMed Central  Google Scholar 

  11. S. N. Kumar, A. L. Fred, H. A. Kumar, and P. S. Varghese, “Firefly Optimization Based Improved Fuzzy Clustering for CT/MR Image Segmentation”, 2019, Springer Nature: Cham, Switzerland.

    Book  Google Scholar 

  12. E. A. Widder, Bioscience Explained, 2001, 1, 1.

    Google Scholar 

  13. W. W. Lorenz, R. O. McCann, M. Longiaru, and M. J. Cormier, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 4438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Verhaegent and T. K. Christopoulos, Anal. Chem., 2002, 74, 4378.

    Article  PubMed  Google Scholar 

  15. S. V. Markova, S. Golz, L. A. Frank, B. Kalthof, and E. S. Vysotski, J. Biol. Chem., 2004, 279, 3212.

    Article  CAS  PubMed  Google Scholar 

  16. Y. Nakajima, K. Kobayashi, K. Yamagishi, T. Enomoto, and Y. Ohmiya, Biosci. Biotechnol. Biochem., 2004, 68, 565.

    Article  PubMed  Google Scholar 

  17. B. Lecuyer, B. Arrio, C. Fresneau, and P. Volfin, Arch. Biochem. Biophys., 1979, 196, 371.

    Article  CAS  PubMed  Google Scholar 

  18. S. Inouye, K. Watanabe, H. Nakamura, and O. Shimomura, FEBS Lett., 2000, 481, 19.

    Article  CAS  PubMed  Google Scholar 

  19. R. Nishihara, R. Paulmurugan, T. Nakajima, E. Yamamoto, A. Natarajan, R. Afjei, Y. Hiruta, N. Iwasawa, S. Nishiyama, D. Citterio, M. Sato, S. B. Kim, and K. Suzuki, Theranostics, 2019, 9, 2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. E. B. Santos, R. Yeh, J. Lee, Y. Nikhamin, B. Punzalan, B. Punzalan, K. La Perle, S. M. Larson, M. Sadelain, and R. J. Brentjens, Nat. Med., 2009, 15, 338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Y. Takenaka, H. Masuda, A. Yamaguchi, S. Nishikawa, Y. Shigeri, Y. Yoshida, and H. Mizuno, Gene, 2008, 425, 28.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Takenaka, A. Yamaguchi, N. Tsuruoka, M. Torimura, T. Gojobori, and Y. Shigeri, Mol. Biol. Evol., 2012, 29, 1669.

    Article  CAS  PubMed  Google Scholar 

  23. O. Shimomura, T. Masugi, F. H. Johnson, and Y. Haneda, Biochemistry, 1978, 17, 994.

    Article  CAS  PubMed  Google Scholar 

  24. Z. Yao, B. S. Zhang, and J. A. Prescher, Curr. Opin. Chem. Biol., 2018, 45, 148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. Nakatsu, S. Ichiyama, J. Hiratake, A. Saldanha, N. Kobashi, K. Sakata, and H. Kato, Nature, 2006, 440, 372.

    Article  CAS  PubMed  Google Scholar 

  26. E. Conti, N. P. Franks, and P. Brick, Structure, 1996, 4, 287.

    Article  CAS  PubMed  Google Scholar 

  27. X. Y. Li, Y. Nakajima, K. Niwa, V. R. Viviani, and Y. Ohmiya, Protein Sci., 2010, 19, 26.

    PubMed  Google Scholar 

  28. F. Weihs and H. Dacres, TrAC, Trends Anal. Chem., 2019, 116, 61.

    Article  CAS  Google Scholar 

  29. S. Iwano, M. Sugiyama, H. Hama, A. Watakabe, N. Hasegawa, T. Kuchimaru, K. Z. Tanaka, M. Takahashi, Y. Ishida, J. Hata, S. Shimozono, K. Namiki, T. Fukano, M. Kiyama, H. Okano, S. Kizaka-Kondoh, T. J. McHugh, T. Yamamori, H. Hioki, S. Maki, {etet al.} Science, 2018, 359, 935.

    Article  CAS  PubMed  Google Scholar 

  30. S. Iwano, R. Obata, C. Miura, M. Kiyama, K. Hama, M. Nakamura, Y. Amano, S. Kojima, T. Hirano, S. Maki, and H. Niwa, Tetrahedron, 2013, 69, 3847.

    Article  CAS  Google Scholar 

  31. L. Mezzanotte, M. van’t Root, H. Karatas, E. A. Goun, and C. W. G. M. Lowik, Trends Biotechnol., 2017, 35, 640.

    Article  CAS  PubMed  Google Scholar 

  32. Y. Ikeda, T. Nomoto, Y. Hiruta, N. Nishiyama, and D. Citterio, Anal. Chem., 2020, 92, 4235.

    Article  CAS  PubMed  Google Scholar 

  33. M. P. Hall, C. C. Woodroofe, M. G. Wood, I. Que, M. van’t Root, Y. Ridwan, C. Shi, T. A. Kirkland, L. P. Encell, K. V. Wood, C. Lowik, and L. Mezzanotte, Nat. Commun., 2018, 9, 132.

    Article  PubMed  PubMed Central  Google Scholar 

  34. S. B. Kim, Protein Eng. Des. Sel., 2012, 25, 261.

    Article  CAS  PubMed  Google Scholar 

  35. A. M. Loening, A. M. Wu, and S. S. Gambhir, Nat. Methods, 2007, 4, 641.

    Article  CAS  PubMed  Google Scholar 

  36. A. M. Loening, A. Dragulescu-Andrasi, and S. S. Gambhir, Nat. Methods, 2010, 7, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Woo and A. G.. von Arnim, Plant Methods, 2008, 4, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. S. B. Kim, M. Torimura, and H. Tao, Bioconjugate Chem., 2013, 24, 2067.

    Article  CAS  Google Scholar 

  39. S. B. Kim, R. Nishihara, D. Citterio, and K. Suzuki, ACS Comb. Sci., 2017, 19, 594.

    Article  CAS  PubMed  Google Scholar 

  40. S. Inouye and Y. Sahara, Biochem. Biophys. Res. Commun., 2008, 365, 96.

    Article  CAS  PubMed  Google Scholar 

  41. M. P. Hall, J. Unch, B. F. Binkowski, M. P. Valley, B. L. Butler, M. G. Wood, P. Otto, K. Zimmerman, G. Vidugiris, T. Machleidt, M. B. Robers, H. A. Benink, C. T. Eggers, M. R. Slater, P. L. Meisenheimer, D. H. Klaubert, F. Fan, L. P. Encell, and K. V. Wood, ACS Chem. Biol., 2012, 7, 1848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. B. Kim, M. Hattori, and T. Ozawa, Int. J. Mol. Sci., 2012, 13, 16986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. R. Heim, D. C. Prasher, and R. Y. Tsien, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 12501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. R. Y. Tsien, Angew. Chem. Int. Ed., 2009, 48, 5612.

    Article  CAS  Google Scholar 

  45. H. W. Yeh, O. Karmach, A. Ji, D. Carter, M. M. Martins-Green, and H. W. Ai, Nat. Methods, 2017, 14, 971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O. Shimomura, Bioluminescence: Chemical Principles and Methods, 2006, 1.

    Book  Google Scholar 

  47. A. Fleiss and K. S. Sarkisyan, Curr. Genet., 2019, 65, 877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. B. Bitler and W. D. Mcelroy, Arch. Biochem. Biophys., 1957, 72, 358.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Oba, N. Yoshida, S. Kanie, M. Ojika, and S. Inouye, Plos One, 2013, 8, e84023.

    Article  PubMed  PubMed Central  Google Scholar 

  50. M. Otto-Duessel, V. Khankaldyyan, I. Gonzalez-Gomez, M. C. Jensen, W. E. Laug, and M. Rosol, Mol. Imaging, 2006, 5, 57.

    Article  PubMed  Google Scholar 

  51. L. Mezzanotte, M. Aswendt, A. Tennstaedt, R. Hoeben, M. Hoehn, and C. Lowik, Contrast Media Mol. I., 2013, 8, 505.

    Article  CAS  Google Scholar 

  52. W. B. Porterfield, K. A. Jones, D. C. McCutcheon, and J. A. Prescher, J. Am. Chem. Soc., 2015, 137, 8656.

    Article  CAS  PubMed  Google Scholar 

  53. N. Kitada, R. Saito, R. Obata, S. Iwano, K. Karube, A. Miyawaki, T. Hirano, and S. A. Maki, Chirality, 2020, 32, 922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. D. C. Ke and S. C. Tu, Photochem. Photobiol., 2011, 87, 1346.

    Article  CAS  PubMed  Google Scholar 

  55. C. Gregor, K. C. Gwosch, S. J. Sahl, and S. W. Hell, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, 962.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. H. Karatani, Y. Fuse, H. Mizuguchi, S. Monji, H. Oyama, T. Waku, and M. Iwasaki, Anal. Sci., 2019, 35, 821.

    Article  CAS  PubMed  Google Scholar 

  57. Y. Oba, S. Kato, M. Ojika, and S. Inouye, Tetrahedron Lett., 2002, 43, 2389.

    Article  CAS  Google Scholar 

  58. R. Nishihara, M. Abe, S. Nishiyama, D. Citterio, K. Suzuki, and S. B. Kim, Sci. Rep., 2017, 7, 908.

    Article  PubMed  PubMed Central  Google Scholar 

  59. R. Nishihara, E. Hoshino, Y. Kakudate, S. Kishigami, N. Iwasawa, S. Sasaki, T. Nakajima, M. Sato, S. Nishiyama, D. Citterio, K. Suzuki, and S. B. Kim, Bioconjugate Chem., 2018, 29, 1922.

    Article  CAS  Google Scholar 

  60. C. C. Zhang, L. Cheng, G. P. Dong, G. X. Han, X. Y. Yang, C. C. Tang, X. Li, Y. B. Zhou, L. P. Du, and M. Y. Li, Org. Biomol. Chem., 2018, 16, 4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. R. Kojima, H. Takakura, M. Kamiya, E. Kobayashi, T. Komatsu, T. Ueno, T. Terai, K. Hanaoka, T. Nagano, and Y. Urano, Angew. Chem. Int. Ed., 2015, 54, 14768.

    Article  CAS  Google Scholar 

  62. M. C. Heffern, H. M. Park, H. Y. Au-Yeung, G. C. Van de Bittner, C. M. Ackerman, A. Stahl, and C. J. Changa, Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 14219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. A. T. Aron, M. C. Heffern, Z. R. Lonergan, M. N. Vander Wal, B. R. Blank, B. Spangler, Y. Zhang, H. M. Park, A. Stahl, A. R. Renslo, E. P. Skaar, and C. J. Chang, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 12669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. J. B. Li, Q. Q. Wang, H. W. Liu, L. Yuan, and X. B. Zhang, Chem. Commun., 2019, 55, 4487.

    Article  CAS  Google Scholar 

  65. J. B. Li, L. L. Chen, Q. Q. Wang, H. W. Liu, X. X. Hu, L. Yuan, and X. B. Zhang, Anal. Chem., 2018, 90, 4167.

    Article  CAS  PubMed  Google Scholar 

  66. M. Abe, R. Nishihara, Y. Ikeda, T. Nakajima, M. Sato, N. Iwasawa, S. Nishiyama, R. Paulmurugan, D. Citterio, S. B. Kim, and K. Suzuki, ChemBioChem, 2019, 20, 1919.

    Article  CAS  PubMed  Google Scholar 

  67. M. K. Reumann, M. C. Weiser, and P. Mayer-Kuckuk, Trends Biotechnol., 2010, 28, 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. S. B. Kim, Y. Takenaka, and M. Torimura, Bioconjugate Chem., 2011, 22, 1835.

    Article  CAS  Google Scholar 

  69. I. Remy and S. W. Michnick, Nat. Methods, 2006, 3, 977.

    Article  CAS  PubMed  Google Scholar 

  70. P. Li, L. Wang, and L. J. Di, J. Proteome Res., 2019, 18, 2987.

    Article  CAS  PubMed  Google Scholar 

  71. K. Tarassov, V. Messier, C. R. Landry, S. Radinovic, M. M. Molina, I. Shames, Y. Malitskaya, J. Vogel, H. Bussey, and S. W. Michnick, Science, 2008, 320, 1465.

    Article  CAS  PubMed  Google Scholar 

  72. E. D. Levy, C. R. Landry, and S. W. Michnick, Science, 2010, 328, 983.

    Article  CAS  PubMed  Google Scholar 

  73. S. W. Michnick, P. H. Ear, C. Landry, M. K. Malleshaiah, and V. Messier, Meth. Enzymol., 2010, 470, 335.

    Article  CAS  Google Scholar 

  74. F. S. Gimble, Chem. Biol., 1998, 5, R251.

    Article  CAS  PubMed  Google Scholar 

  75. S. B. Kim, M. Awais, M. Sato, Y. Umezawa, and H. Tao, Anal. Chem., 2007, 79, 1874.

    Article  CAS  PubMed  Google Scholar 

  76. A. Taneoka, A. Sakaguchi-Mikami, T. Yamazaki, W. Tsugawa, and K. Sode, Biosens. Bioelectron., 2009, 25, 76.

    Article  CAS  PubMed  Google Scholar 

  77. M. Hattori, S. Haga, H. Takakura, M. Ozaki, and T. Ozawa, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 9332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. N. Johnsson and A. Varshavsky, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 10340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. I. Ghosh, A. D. Hamilton, and L. Regan, J. Am. Chem. Soc., 2000, 122, 5658.

    Article  CAS  Google Scholar 

  80. T. Nagai, A. Sawano, E. S. Park, and A. Miyawaki, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 3197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. T. Ozawa, S. Nogami, M. Sato, Y. Ohya, and Y. Umezawa, Anal. Chem., 2000, 72, 5151.

    Article  CAS  PubMed  Google Scholar 

  82. T. Ozawa, A. Kaihara, M. Sato, K. Tachihara, and Y. Umezawa, Anal. Chem., 2001, 73, 2516.

    Article  CAS  PubMed  Google Scholar 

  83. R. Paulmurugan, Y. Umezawa, and S. S. Gambhir, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 15608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. R. Paulmurugan and S. S. Gambhir, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 15883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. J. Kyte and R. F. Doolittle, J. Mol. Biol., 1982, 157, 105.

    Article  CAS  PubMed  Google Scholar 

  86. K. E. Luker, M. C. Smith, G. D. Luker, S. T. Gammon, H. Piwnica-Worms, and D. Piwnica-Worms, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 12288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. R. Paulmurugan and S. S. Gambhir, Anal. Chem., 2007, 79, 2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. S. B. Kim, M. Sato, and H. Tao, Anal. Chem., 2009, 81, 67.

    Article  CAS  PubMed  Google Scholar 

  89. R. Paulmurugan and S. S. Gambhir, Anal. Chem., 2005, 77, 1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. A. Kaihara, Y. Kawai, M. Sato, T. Ozawa, and Y. Umezawa, Anal. Chem., 2003, 75, 4176.

    Article  CAS  PubMed  Google Scholar 

  91. S. B. Kim, Y. Otani, Y. Umezawa, and H. Tao, Anal. Chem., 2007, 79, 4820.

    Article  CAS  PubMed  Google Scholar 

  92. K. M. Peterson, F. Franchi, M. Olthoff, I. Y. Chen, R. Paulmurugan, and M. Rodriguez-Porcel, Stem Cells, 2020, 38, 808.

    Article  CAS  PubMed  Google Scholar 

  93. C. T. Chan, R. E. Reeves, R. Geller, S. S. Yaghoubi, A. Hoehne, D. E. Solow-Cordero, G. Chiosis, T. F. Massoud, R. Paulmurugan, and S. S. Gambhir, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, E2476.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. K. A. Jones, W. B. Porterfield, C. M. Rathbun, D. C. McCutcheon, M. A. Paley, and J. A. Prescher, J. Am. Chem. Soc., 2017, 139, 2351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. T. T. Ong, Z. Ang, R. Verma, R. Koean, J. K. C. Tam, and J. L. Ding, Front. Bioeng. Biotech., 2020, 8, 412.

    Article  Google Scholar 

  96. C. S. Martin, P. A. Wight, A. Dobretsova, and I. Bronstein, Biotechniques, 1996, 21, 520.

    Article  CAS  PubMed  Google Scholar 

  97. F. Weihs, A. Peh, and H. Dacres, Anal. Chim. Acta, 2020, 1102, 99.

    Article  CAS  PubMed  Google Scholar 

  98. Y. Xu, D. W. Piston, and C. H. Johnson, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. A. Dragulescu-Andrasi, C. T. Chan, A. De, T. F. Massoud, and S. S. Gambhir, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 12060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. S. H. Sun, X. B. Yang, Y. Wang, and X. H. Shen, Int. J. Mol. Sci., 2016, 17, 1704.

    Article  PubMed  PubMed Central  Google Scholar 

  101. F. Y. Li, J. P. Yu, Z. P. Zhang, Z. Q. Cui, D. B. Wang, H. P. Wei, and X. E. Zhang, Talanta, 2013, 109, 141.

    Article  CAS  PubMed  Google Scholar 

  102. T. Machleidt, C. C. Woodroofe, M. K. Schwinn, J. Mendez, M. B. Robers, K. Zirnmerman, P. Otto, D. L. Daniels, T. A. Kirkland, and K. V. Wood, ACS Chem. Biol., 2015, 10, 1797.

    Article  CAS  PubMed  Google Scholar 

  103. T. Otsuji, E. Okuda-Ashitaka, S. Kojima, II. Akiyama, S. Ito, and Y. Ohmiya, Anal. Biochem., 2004, 329, 230.

    Article  CAS  PubMed  Google Scholar 

  104. J. Hiblot, Q. L. Y. Yu, M. D. B. Sabbadini, L. Reymond, L. Xue, A. Schena, O. Sallin, N. Hill, R. Griss, and K. Johnsson, Angew. Chem. Int. Ed., 2017, 56, 14556.

    Article  CAS  Google Scholar 

  105. S. B. Kim, R. Fujii, A. Natarajan, T. F. Massoud, and R. Paulmurugan, Chem. Commun., 2020, 56, 281.

    Article  Google Scholar 

  106. N. C. Dale, E. K. M. Johnstone, C. W. White, and K. D. G. Pfleger, Front. Bioeng. Biotech., 2019, 7, 56.

    Article  Google Scholar 

  107. K. Saito, Y. F. Chang, K. Horikawa, N. Hatsugai, Y. Higuchi, M. Hashida, Y. Yoshida, T. Matsuda, Y. Arai, and T. Nagai, Nat. Commun., 2012, 3, 1262.

    Article  PubMed  Google Scholar 

  108. J. Chu, Y. Oh, A. Sens, N. Ataie, H. Dana, J. J. Macklin, T. Laviv, E. S. Welf, K. M. Dean, F. J. Zhang, B. B. Kim, C. T. Tang, M. Hu, M. A. Baird, M. W. Davidson, M. A. Kay, R. Fiolka, R. Yasuda, D. S. Kim, H. L. Ng, {etet al.} Nat. Biotechnol., 2016, 34, 760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. L. Lu, B. Li, S. Ding, Y. Fan, S. Wang, C. Sun, M. Zhao, C. X. Zhao, and F. Zhang, Nat. Commun., 2020, 11, 4192.

    Article  PubMed  PubMed Central  Google Scholar 

  110. V. Hertlein, H. Flores-Romero, K. K. Das, S. Fischer, M. Heunemann, M. Calleja-Felipe, S. Knafo, K. Hipp, K. Harter, J. C. Fitzgerald, and A. J. Garcia-Saez, Life Sci. Alliance, 2020, 3, e201900600

    Article  PubMed  Google Scholar 

  111. S. B. Kim, M. Sato, and H. Tao, Bioconjugate Chem., 2009, 20, 2324.

    Article  CAS  Google Scholar 

  112. S. B. Kim, R. Nishihara, D. Citterio, and K. Suzuki, Bioconjugate Chem., 2016, 27, 354.

    Article  CAS  Google Scholar 

  113. S. B. Kim, R. Nishihara, R. Fujii, R. Paulmurugan, D. Citterio, and K. Suzuki, Anal. Sci., 2019, 35, 71.

    Article  CAS  PubMed  Google Scholar 

  114. Y. Jung, C. Coronel-Aguilera, I. J. Doh, II. J. Min, T. Lim, B. M. Applegate, and E. Bae, Appl. Optics, 2020, 59, 801.

    Article  CAS  Google Scholar 

  115. S. B. Kim, S. S. Hori, N. Sadeghipour, U. K. Sukumar, R. Fujii, T. F. Massoud, and R. Paulmurugan, Photochem. Photobiol. Sci., 2020, 19, 524.

    Article  CAS  PubMed  Google Scholar 

  116. M. Rezazadeh, S. Seidi, M. Lid, S. Pedersen-Bjergaard, and Y. Yamini, TrAC, Trends Anal. Chem., 2019, 118, 548.

    Article  CAS  Google Scholar 

  117. M. M. Calabretta, R. Alvarez-Diduk, E. Michelini, A. Roda, and A. Merkoci, Biosens. Bioelectron., 2020, 150, 111902.

    Article  CAS  PubMed  Google Scholar 

  118. E. Michelini, M. M. Calabretta, L. Cevenini, A. Lopreside, T. Southworth, D. M. Fontaine, P. Simoni, B. R. Branchini, and A. Roda, Biosens. Bioelectron., 2019, 123, 269.

    Article  CAS  PubMed  Google Scholar 

  119. J. R.. de Wet, K. V. Wood, D. R. Helinski, and M. DeLuca, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 7870.

    Article  PubMed  PubMed Central  Google Scholar 

  120. B. R. Branchini, D. M. Ablamsky, M. H. Murtiashaw, L. Uzasci, H. Fraga, and T. L. Southworth, Anal. Biochem., 2007, 361, 253.

    Article  CAS  PubMed  Google Scholar 

  121. B. R. Branchini, D. M. Ablamsky, A. L. Davis, T. L. Southworth, B. Butler, F. Fan, A. P. Jathoul, and M. A. Pule, Anal. Biochem., 2010, 396, 290.

    Article  CAS  PubMed  Google Scholar 

  122. B. R. Branchini, T. L. Southworth, D. M. Fontaine, D. Kohrt, F. S. Welcome, C. M. Florentine, E. R. Henricks, D. B. DeBartolo, E. Michelini, L. Cevenini, A. Roda, and M. J. Grossel, Anal. Biochem., 2017, 534, 36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. K. V. Wood, Y. A. Lam, H. H. Seliger, and W. D. McElroy, Science, 1989, 244, 700.

    Article  CAS  PubMed  Google Scholar 

  124. M. Chang, K. P. Anttonen, S. L. G. Cirillo, K. P. Francis, and J. D. Cirillo, Plos One, 2014, 9, e108341.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Y. Nakajima, T. Yamazaki, S. Nishii, T. Noguchi, H. Hoshino, K. Niwa, V. R. Viviani, and Y. Ohmiya, Plos One, 2010, 5, e10011.

    Article  PubMed  PubMed Central  Google Scholar 

  126. V. R. Bevilaqua, T. Matsuhashi, G. Oliveira, P. S. L. Oliveira, T. Hirano, and V. R. Viviani, Sci. Rep., 2019, 9, 8998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. V. R. Viviani, F. G. C. Arnoldi, B. Venkatesh, A. J. S. Neto, F. G. T. Ogawa, A. T. L. Oehlmeyer, and Y. Ohmiya, J. Biochem., 2006, 140, 467.

    Article  CAS  PubMed  Google Scholar 

  128. V. R. Viviani, E. J. H. Bechara, and Y. Ohmiya, Biochemistry, 1999, 38, 8271.

    Article  CAS  PubMed  Google Scholar 

  129. M. H. Degeling, M. S. S. Bovenberg, G. K. Lewandrowski, M. C.. de Gooijer, C. L. A. Vleggeert-Lankamp, M. Tannous, C. A. Maguire, and B. A. Tannous, Anal. Chem., 2013, 85, 3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. A. A. Homaei, A. B. Mymandi, R. Sariri, E. Kamrani, R. Stevanato, S. M. Etezad, and K. Khajeh, J. Photochem. Photobiol. B, 2013, 125, 131.

    Article  CAS  PubMed  Google Scholar 

  131. M. Cronin, A. R. Akin, S. A. Collins, J. Meganck, J. B. Kim, C. K. Baban, S. A. Joyce, G. M.. van Dam, N. Zhang, D.. van Sinderen, G. C. O’Sullivan, N. Kasahara, C. G. Gahan, K. P. Francis, and M. Tangney, Plos One, 2012, 7, e30940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. T. T. Xu, S. Ripp, G. S. Sayler, and D. M. Close, Plos One, 2014, 9, e96347.

    Article  PubMed  PubMed Central  Google Scholar 

  133. S. B. Kim, A. Kanno, T. Ozawa, H. Tao, and Y. Umezawa, ACS Chem. Biol., 2007, 2, 484.

    Article  CAS  PubMed  Google Scholar 

  134. F. Ataei, M. Torkzadeh-Mahani, and S. Hosseinkhani, Biosens. Bioelectron., 2013, 41, 642.

    Article  CAS  PubMed  Google Scholar 

  135. T. Ozawa, T. M. Takeuchi, A. Kaihara, M. Sato, and Y. Umezawa, Anal. Chem., 2001, 73, 5866.

    Article  CAS  PubMed  Google Scholar 

  136. E. C. Schwartz, L. Saez, M. W. Young, and T. W. Muir, Nat. Chem. Biol., 2007, 3, 50.

    Article  CAS  PubMed  Google Scholar 

  137. E. Salomonnson, A. C. Stacer, A. Ehrlich, K. E. Luker, and G. D. Luker, Plos One, 2013, 8, e51500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. N. Misawa, A. K. M. Kafi, M. Hattori, K. Miura, K. Masuda, and T. Ozawa, Anal. Chem., 2010, 82, 2552.

    Article  CAS  PubMed  Google Scholar 

  139. S. B. Kim, T. Ozawa, S. Watanabe, and Y. Umezawa, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 11542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. A. Kaihara and Y. Umezawa, Chem. Asian J., 2008, 3, 38.

    Article  CAS  PubMed  Google Scholar 

  141. R. Paulmurugan and S. S. Gambhir, Anal. Chem., 2003, 75, 1584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. R. Paulmurugan, T. F. Massoud, J. Huang, and S. S. Gambhir, Cancer Res., 2004, 64, 2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. S. B. Kim, R. Fujj, R. Nishihara, R. J. C. Bose, D. Citterio, K. Suzuki, T. F. Massoud, and R. Paulmurugan, ACS Comb. Sci., 2019, 21, 473.

    Article  CAS  PubMed  Google Scholar 

  144. A. S. Dixon, M. K. Schwinn, M. P. Hall, K. Zimmerman, P. Otto, T. II. Lubben, B. L. Butler, B. F. Binkowski, T. Machleidt, T. A. Kirkland, M. G. Wood, C. T. Eggers, L. P. Encell, and K. V. Wood, ACS Chem. Biol., 2016, 11, 400.

    Article  CAS  PubMed  Google Scholar 

  145. M. Endo, M. Miyasaki, Q. J. Li, G. Kawamura, and T. Ozawa, Anal. Sci., 2019, 35, 835.

    Article  CAS  PubMed  Google Scholar 

  146. J. P. Welsh, K. G. Patel, K. Manthiram, and J. R. Swartz, Biochem. Biophys. Res. Commun., 2009, 389, 563.

    Article  CAS  PubMed  Google Scholar 

  147. V. Villalobos, S. Naik, M. Bruinsma, R. S. Dothager, M. H. Pan, M. Samrakandi, B. Moss, A. Elhammali, and D. Piwnica-Worms, Chem. Biol., 2010, 17, 1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. S. B. Kim, Y. Umezawa, K. A. Kanno, and H. Tao, ACS Chem. Biol., 2008, 3, 359.

    Article  CAS  PubMed  Google Scholar 

  149. N. Hida, M. Awais, M. Takeuchi, N. Ueno, M. Tashiro, C. Takagi, T. Singh, M. Hayashi, Y. Ohmiya, and T. Ozawa, PLos One, 2009, 4, e5868.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science KAKENHI grants to S.-B. K.: numbers 17H01215, 24225001, and 20K21851.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung-Bae Kim or Ramasamy Paulmurugan.

Additional information

Sung-Bae Kimis a senior scientist at the National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. After receiving his Ph.D. in chemistry from the University of Tokyo, he served as a research scientist at AIST. Since 2010, he is a tenure-track researcher at AIST. His current studies include the development of novel Artificial Luciferases, synthesis of luciferins, and bioluminescent imaging probes. He is also interested in their application to bioassays and molecular imaging in living subjects.

Ramasamy Paulmuruganis an associate professor in the Department of Radiology, Stanford University School of Medicine, Stanford, California, USA. He received his Ph.D. from University of Madras, India. After serving as a scientist in Rajiv Gandhi Center for Biotechnology, India, he joined Stanford University in 2003 as a senior research scientist to work under the Molecular Imaging Program at Stanford University (MIPS). Since 2009, he is an academic faculty at Stanford University School of Medicine. Currently, his lab is working on developing in vivo molecular imaging assays to noninvasively monitor different epigenetic process in live animals. His lab is also working on developing novel molecularly targeted therapies (microRNA and gene therapy) for various cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SB., Paulmurugan, R. Bioluminescent Imaging Systems for Assay Developments. ANAL. SCI. 37, 233–247 (2021). https://doi.org/10.2116/analsci.20R003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20R003

Keywords

Navigation