Skip to main content
Log in

Polymerase/Nicking Enzyme Powered Dual-template Multi-cycle G-Triplex Machine for HIV-1 Determination

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We proposed a dual-template, multi-cycle DNA nanomachine driven by polymerase and a nicking enzyme with high efficiency. The reaction system simply consists of two templates (T1, T2) and two enzymes (KF polymerase, Nb.BbvCI). The two templates are similar in structure (X-X’-Y, Y-Y’-C) with a primer recognition region, a primer analogue generation region, an output region (3′-5′), and two nicking sites. The output strand of T1 is the primer of T2, and the G-rich fragment (G3) is designed as the final product. In the presence of HIV-1, numerous G3 were generated through the multicycle amplification strategy and formed a G-triplex/ThT complex after the addition of thioflavin T (ThT), which greatly enhanced the fluorescence intensity as a signal reporter in the label-free sensing strategy. A dynamic response range of 50 fM - 2 nM for HIV-1 gene detection can be achieved through this multi-cycle G-triplex machine, and benefiting from the high efficiency amplification strategy, the enzymatic reaction can be completed within 45 min and followed by fluorescence measurements. In addition, the analysis of other targets can be achieved by replacing the template sequence. Thus, there is a certain application potential of this strategy for trace biomarker analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Das and S. O. Kelleys, Angew. Chem., Int. Ed. Engl., 2020, 59, 7.

    Article  Google Scholar 

  2. S. R. Shin, Y. S. Zhang, and D. J. Kim, Anal. Chem., 2016, 88, 10019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Z. Liu, T. Liu, and C. A. Tao, Anal. Sci., 2020, 36, 7.

    CAS  Google Scholar 

  4. X. H. Wen, X. W. Xu, and P. F. Huang, Anal. Sci., 2020, 36, 697.

    Article  Google Scholar 

  5. E. Vargas, H. Teymourian, and F. Tehrani, Angew. Chem., Int. Ed. Engl, 2019, 58, 6376.

    Article  CAS  PubMed  Google Scholar 

  6. C. Liu, X. Zeng, and Z. An, ACS Sens., 2018, 3, 1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. C. Brazaca, J. R. Moreto, A. Martin and F. Tehrani, ACS Nano, 2019, 13, 13325.

    Article  CAS  PubMed  Google Scholar 

  8. N. S. Li, W. L. Lin, and Y. P. Hsu, ACS Appl. Bio Mater., 2019, 2, 4847.

    Article  CAS  PubMed  Google Scholar 

  9. S. Mishra, Y. Lee, and J. W. Parks, Anal. Chem., 2018, 90, 12824.

    Article  CAS  PubMed  Google Scholar 

  10. L. Hartwell, D. Mankoff, and A. Paulovich, Nat. Biotechnol., 2006, 24, 905.

    Article  CAS  PubMed  Google Scholar 

  11. Z. Chen, L. Miao, and Y. Liu, Chem. Commun., 2017, 53, 12922.

    Article  CAS  Google Scholar 

  12. D. Yang, H. Zhou, and N. E. Dina, R. Soc. Open Sci., 2018, 5, 180955.

    Article  PubMed  PubMed Central  Google Scholar 

  13. L. Cao, X. Cui, and J. Hu, Biosens. Bioelectron., 2017, 90, 459.

    Article  CAS  PubMed  Google Scholar 

  14. Y. Wang, D. X. Liu, and J. P. Deng, Anal. Chim. Acta, 2017, 996, 74.

    Article  CAS  PubMed  Google Scholar 

  15. N. Tomita, Y. Mori, and H. Kanda, Nat. Protoc., 2008, 3, 877.

    Article  CAS  PubMed  Google Scholar 

  16. D. Wang, C. Vietz, and T. Schroder, Nano Lett., 2017, 17, 5368.

    Article  CAS  PubMed  Google Scholar 

  17. S. G. Harroun, C. Prevost-Tremblay, and D. Lauzon, Nanoscale, 2018, 10, 4607.

    Article  CAS  PubMed  Google Scholar 

  18. H. Gao, X. Zheng, and T. Yang, Chem. Commun., 2020, 56, 53.

    Google Scholar 

  19. F. J. Mo, M. Chen, and H. Meng, Sens. Actuators, B, 2020, 309, 7.

    Article  Google Scholar 

  20. J. Wang, S. Li, and J. Xu, Chem. Commun., 2020, 56, 1681.

    Article  CAS  Google Scholar 

  21. Y. Cao, L. Li, and B. Han, Biosens. Bioelectron., 2019, 141, 111397.

    Article  CAS  PubMed  Google Scholar 

  22. P. Li, L. Wang, and J. Zhu, Biosens. Bioelectron., 2015, 72, 107.

    Article  CAS  PubMed  Google Scholar 

  23. P. Qin, L. Yao, and J. Xu, Chem. Commun., 2019, 55, 14367.

    Article  CAS  Google Scholar 

  24. E. Xiong and L. Jiangs, Analyst, 2019, 144, 634.

    Article  CAS  PubMed  Google Scholar 

  25. R. Zeng, L. Su, and Z. Luo, Anal. Chim. Acta, 2018, 1038, 21.

    Article  CAS  PubMed  Google Scholar 

  26. M. S. Reid, X. C. Le, and H. Zhangs, Angew. Chem., Int., Ed. Engl., 2018, 57, 11856.

    Article  CAS  PubMed  Google Scholar 

  27. H. Qi, S. Yue, and S. Bi, Biosens. Bioelectron., 2018, 110, 207.

    Article  CAS  PubMed  Google Scholar 

  28. H. Zhang, C. Fang, and S. Zhangs, Chemistry, 2010, 16, 12434.

    Article  CAS  PubMed  Google Scholar 

  29. B. Shlyahovsky, D. Li, and Y. Weizmann, J. Am. Chem. Soc., 2007, 129, 3814.

    Article  CAS  PubMed  Google Scholar 

  30. S. Bi, Y. Cui, and Y. Dong, Biosens. Bioelectron., 2014, 53, 207.

    Article  CAS  PubMed  Google Scholar 

  31. Q. Yan, Q. Duan, and Y. Huang, RSCAdv., 2019, 9, 41305.

    CAS  Google Scholar 

  32. X. Xu, W. Mao, and F. Lin, Catal. Commun., 2016, 74, 16.

    Article  CAS  Google Scholar 

  33. S. Wang, B. Fu, and S. Peng, Chem. Commun., 2013, 49, 7920.

    Article  CAS  Google Scholar 

  34. H. Zhou, Z. F. Wu, and Q. J. Han, Anal. Chem., 2018, 90, 3220.

    Article  CAS  PubMed  Google Scholar 

  35. H. Que, X. Yan, and B. Guo, Sens. Actuators, B, 2019, 291, 394.

    Article  CAS  Google Scholar 

  36. Q. Liu, X. Sun, and M. Liu, Sens. Actuators, B, 2020, 310, 127804.

    Article  CAS  Google Scholar 

  37. A. Kaushik, P. K. Vabbina, and V. Atluri, Biosens. Bioelectron., 2016, 86, 426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Yuan, J. Fang, and Q. Duan, Biosens. Bioelectron., 2019, 133, 243.

    Article  CAS  PubMed  Google Scholar 

  39. S. Xu, Q. Li, and J. Xiang, Sci. Rep., 2016, 6, 24793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. N. K. Schwalb and F. Tempss, Science, 2008, 322, 243.

    Article  CAS  PubMed  Google Scholar 

  41. R. Wang, L. Wang, and H. Zhao, Biosens. Bioelectron., 2016, 86, 834.

    Article  CAS  PubMed  Google Scholar 

  42. H. Xu, D. Wu, and C. Q. Li, Biosens. Bioelectron., 2017, 90, 314.

    Article  CAS  PubMed  Google Scholar 

  43. Z. F. Shen, F. Li, and Y. F. Jiang, Anal. Chem., 2018, 90, 3335.

    Article  CAS  PubMed  Google Scholar 

  44. X. Liu, M. Zou, and D. Li, Anal. Chim. Acta, 2019, 1076, 138.

    Article  CAS  PubMed  Google Scholar 

  45. H. Xu, Y. Zhang, and S. Zhang, Anal. Chim. Acta, 2019, 1047, 172.

    Article  CAS  PubMed  Google Scholar 

  46. H. Xu, Y. Zhang, and S. Zhang, Sens. Actuators, B, 2019, 281, 1016.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks for the support of the Science and Technology Research Program of Chongqing Yuzhong District Science and Technology Commission (Grant No. 20180127).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, G., Duan, Q., Yan, Q. et al. Polymerase/Nicking Enzyme Powered Dual-template Multi-cycle G-Triplex Machine for HIV-1 Determination. ANAL. SCI. 37, 1087–1093 (2021). https://doi.org/10.2116/analsci.20P413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P413

Keywords

Navigation