Skip to main content
Log in

Capillary Electrophoresis/Dynamic Frontal Analysis for the Enzyme Assay of 4-Nitrophenyl Phosphate with Alkaline Phosphatase

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A substrate of 4-nitrophenyl phosphate was enzymatically hydrolyzed by alkaline phosphatase (ALP) in a capillary tube, while an injected zone of the substrate was electrophoretically migrating in the separation buffer containing the enzyme by capillary electrophoresis (CE). During CE migration of the substrate from the start time of the electrophoresis to the detection time of the substrate, the substrate was continuously hydrolyzed by ALP to form a product of 4-nitrophenolate, and a plateau signal of 4-nitrophenolate was detected as a result of the zero-order kinetic reaction. The height of the plateau signal was directly related to the reaction rate, and it was used for the determination of a Michaelis-Menten constant through Lineweaver-Burk plots. Since the plateau signal is attributed to the dynamic formation of the product by the enzymatic reaction in CE, this analysis method is named as capillary electrophoresis/dynamic frontal analysis (CE/DFA). In CE/DFA, the CE separation is included on detecting the plateau signal, and the hydrolysis product before the sample injection is resolved from the dynamically and continuously formed product. The inhibition of the enzyme with the product is also eliminated in CE/DFA by the CE separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Jensen, S. W. Larsen, C. Larsen, and J. Østergaard, J. Drug Del. Sci. Tech., 2013, 23, 333.

    Article  CAS  Google Scholar 

  2. S. Štěpánová and V. Kašička, J. Sep. Sci., 2015, 38, 2708.

    Article  PubMed  Google Scholar 

  3. S. K. Wiedmer and J. Lokajová, J. Sep. Sci., 2013, 36, 37.

    Article  CAS  PubMed  Google Scholar 

  4. J. Y. Gao, P. L. Dubin, and B. B. Muhoberac, Anal. Chem., 1997, 69, 2945.

    Article  CAS  PubMed  Google Scholar 

  5. K. Vuignier, J. Schappler, J.-L. Veuthey, P.-A. Carrupt, and S. Martel, J. Pharm. Biomed. Anal., 2010, 53, 1288.

    Article  CAS  PubMed  Google Scholar 

  6. C. Ràfols, S. Zarza, and E. Bosch, Talanta, 2014, 130, 241.

    Article  PubMed  Google Scholar 

  7. C. Qian, H. Fu, K. A. Kovalchik, H. Li, and D. D. Y. Chen, Anal. Chem., 2017, 89, 9483.

    Article  CAS  PubMed  Google Scholar 

  8. M. Xu, C. Liu, M. Zhou, Q. Li, R. Wang, and J. Kang, Anal. Chem., 2016, 88, 8050.

    Article  CAS  PubMed  Google Scholar 

  9. J. Østergaard, S. H. Hansen, H. Jensen, and A. E. Thomsen, Electrophoresis, 2005, 26, 4050.

    Article  PubMed  Google Scholar 

  10. L. Michalcová and Z. Glatz, J. Sep. Sci., 2015, 38, 325.

    Article  PubMed  Google Scholar 

  11. Y. Zhang, Y. Sha, K. Qian, X. Chen, and Q. Chen, Electrophoresis, 2017, 38, 1038.

    Article  CAS  PubMed  Google Scholar 

  12. C. Qian, K. A. Kovalchik, M. S. MacLennan, X. Huang, and D. D. Y. Chen, Electrophoresis, 2017, 38, 1572.

    Article  CAS  PubMed  Google Scholar 

  13. V. Hruška, M. Beneš, J. Svobodová, I. Zusková, and B. Gaš, Electrophoresis, 2012, 33, 938.

    Article  PubMed  Google Scholar 

  14. J. Svobodová, M. Beneš, V. Hruška, K. Ušelová, and B. Gaš, Electrophoresis, 2012, 33, 948.

    Article  PubMed  Google Scholar 

  15. G. K. E. Scriba and F. Belal, Chromatographia, 2015, 78, 947.

    Article  CAS  Google Scholar 

  16. J. Pei, J. F. Dishinger, D. L. Roman, C. Rungwanitcha, R. R. Neubig, and R. T. Kennedy, Anal. Chem., 2008, 80, 5225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Schuchert-Shi and P. C. Hauser, Anal. Biochem., 2008, 376, 262.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Fan, M. Hense, R. Ludewig, C. Weisgerber, and G. K. E. Scriba, J. Pharm. Biomed. Anal., 2011, 54, 772.

    Article  CAS  PubMed  Google Scholar 

  19. K. K. Møller, F. P. Rattray, J. C. Sørensen, and Y. Ardö, J. Agric. Food Chem., 2012, 60, 5454.

    Article  PubMed  Google Scholar 

  20. Q. Zhu, X. Huo, S. H. Heinemann, R. Schönherr, R. El-Mergawy, and G. K. E. Scriba, J. Chromatogr. A, 2014, 1359, 224.

    Article  CAS  PubMed  Google Scholar 

  21. F. A. Sandbaumhüter, R. Theurillat, and W. Thormann, Electrophoresis, 2015, 36, 2703.

    Article  PubMed  Google Scholar 

  22. J. Bao and F. E. Regnier, J. Chromatogr., 1992, 608, 217.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Xu, X. Liu, and M. P. C. Ip, J. Liq. Chromatogr. Relat. Technol., 1998, 21, 2781.

    Article  CAS  Google Scholar 

  24. A. R. Whisnant, S. E. Johnston, and S. D. Gilman, Electrophoresis, 2000, 21, 1341.

    Article  CAS  PubMed  Google Scholar 

  25. S. Van Dyck, A. Van Schepdael, and J. Hoogmartens, Electrophoresis, 2001, 22, 1436.

    Article  PubMed  Google Scholar 

  26. A. R. Whisnant and S. D. Gilman, Anal. Biochem., 2002, 307, 226.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Yoshimoto, A. Shibukawa, H. Sasagawa, S. Nitta, and T. Nakagawa, J. Pharm. Biomed. Anal., 1995, 13, 483.

    Article  CAS  PubMed  Google Scholar 

  28. J. Iqbal, Anal. Biochem., 2011, 414, 226.

    Article  CAS  PubMed  Google Scholar 

  29. W. Min, W. Wang, J. Chen, A. Wang, and Z. Hu, Anal. Bioanal. Chem., 2012, 404, 2397.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Yin, W. Zhao, M. Tian, Q. Zhang, L. Guo, and L. Yang, Analyst [London], 2014, 139, 1973.

    Article  CAS  PubMed  Google Scholar 

  31. M. Cheng and Z. Chen, Electrophoresis, 2017, 38, 486.

    Article  CAS  PubMed  Google Scholar 

  32. D. B. Craig, E. A. Arriaga, J. C. Y. Wong, H. Lu, and N. J. Dovichi, J. Am. Chem. Soc., 1996, 118, 5245.

    Article  CAS  Google Scholar 

  33. G. K. Shoemaker, D. H. Juers, J. M. L. Coombs, B. W. Matthews, and D. B. Craig, Biochemistry, 2003, 42, 1707.

    Article  CAS  PubMed  Google Scholar 

  34. D. B. Craig, A. M. Haslam, J. M. L. Coombs, and E. R. Nochols, Biochem. Cell Biol., 2010, 88, 451.

    Article  CAS  PubMed  Google Scholar 

  35. D. B. Craig, Rev. Anal. Chem., 2013, 32, 103.

    Article  CAS  Google Scholar 

  36. J. J. Crawford, J. W. Hollett, and D. B. Craig, Electrophoresis, 2016, 37, 2217.

    Article  CAS  PubMed  Google Scholar 

  37. R. L. Dean, Mol. Biol. Edu., 2002, 30, 401.

    Article  CAS  Google Scholar 

  38. B. Grodner and M. Napiórkowska, J. Pharm. Biomed. Anal., 2017, 143, 285.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI [grant number 17K05903].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Takayanagi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takayanagi, T., Mine, M. & Mizuguchi, H. Capillary Electrophoresis/Dynamic Frontal Analysis for the Enzyme Assay of 4-Nitrophenyl Phosphate with Alkaline Phosphatase. ANAL. SCI. 36, 829–834 (2020). https://doi.org/10.2116/analsci.19P471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P471

Keywords

Navigation