Skip to main content
Log in

Determination of Chemical Oxygen Demand in Water Samples Using Gas-phase Molecular Absorption Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Chemical oxygen demand (COD) is important for water quality assessment as it represents the level of reductive organic pollution from eutrophication in aquatic systems. For surface water quality monitoring, permanganate is usually applied as an oxidizing reagent, and the routine CODMn determination is mostly achieved by titration method. However, this titration method is tedious and time consuming, and the results suffer from environmental temperature fluctuations and complicated operation techniques. In this study, a novel CODMn determination method was developed using gas-phase molecular absorption spectrometry equipped with an online automated digestion device for the first time. The effects of digestion temperature, digestion time and sulfuric acid content were thoroughly studied. This method exhibited good linearity (0.35 to 12 mg/L), a low detection limit (0.12 mg/L), and good RSD from various water samples (0.71 - 2.37%). When used for CODMn determination in routine water quality monitoring, this automated GPMAS can considerably improve analysis speed, efficiency, accuracy and stability compared to the traditional titration method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Zheng, B. Zhou, J. Bai, L. Li, Z. Jin, J. Zhang, J. Li, Y. Liu, W. Cai, and X. Zhu, Adv. Mater, 2008, 20, 1044.

    Article  CAS  Google Scholar 

  2. W. Liu, Q. Zhang, and G. Liu, Hydrobiologia, 2010, 644, 289.

    Article  CAS  Google Scholar 

  3. W. Liu, Q. Zhang, and G. Liu, Hydrological Processes, 2012, 26, 570.

    Article  CAS  Google Scholar 

  4. W. A. Moore, F. J. Ludzack, and C. C. Ruchhoft, Anal. Chem., 1951, 23, 1297.

    Article  CAS  Google Scholar 

  5. R. A. Dobbs and R. T. Williams, Anal. Chem., 1963, 35, 1064.

    Article  CAS  Google Scholar 

  6. F. J. Baumann, Anal. Chem., 1974, 46, 1336

    Article  CAS  Google Scholar 

  7. J. Wang, C. Wu, K. Wu, Q. Cheng, and Y. Zhou, Anal. Chim. Acta, 2012, 736, 55

    Article  CAS  PubMed  Google Scholar 

  8. I. H. A. Badr, H. H. Hassan, E. Hamed, and A. M. Abdel-Aziz, Electroanalysis, 2017, 29, 2401.

    Article  CAS  Google Scholar 

  9. G. Le, H. Yang and X. Yu, Water Sci. Technol., 2018, 77, 1271.

    Article  CAS  PubMed  Google Scholar 

  10. G. Cazaudehore, B. Schraauwers, C. Peyrelasse, C. Lagnet, and F. Monlau, J. Environ. Manage., 2019, 250, 109464.

    Article  CAS  PubMed  Google Scholar 

  11. D. T. K. Hue, S. Hashimoto, H. Nishikawa, Y. Maeda, and N. Takenaka, Anal. Sci., 2017, 33, 931.

    Article  CAS  PubMed  Google Scholar 

  12. J. Chen, S. Liu, X. Qi, S. Yan, and Q. Guo, Sens. Actuators, B, 2018, 254, 778.

    Article  CAS  Google Scholar 

  13. J. Li, L. Li, L. Zheng, Y. Xian, S. Ai, and L. Jin, Anal. Chim. Acta, 2005, 548, 199.

    Article  CAS  Google Scholar 

  14. H. Yu, C. Ma, X. Quan, S. Chen, and H. Zhao, Environ. Sci. Technol., 2009, 43, 1935.

    Article  CAS  PubMed  Google Scholar 

  15. C. A. Almeida, P. González, M. Mallea, L. D. Martinez, and R. A. Gil, Talanta, 2012, 97, 273.

    Article  CAS  PubMed  Google Scholar 

  16. H. Zhang, J. Zhu, Q. Chen, S. Jiang, Y. Zhang, and T. Fu, Microchem. J., 2018, 143, 292.

    Article  CAS  Google Scholar 

  17. H. Matsuura, T. Takahashi, S. Sakamoto, T. Kitamura, and S. Uchiyama, Anal. Sci. 2017, 33, 703.

    Article  CAS  PubMed  Google Scholar 

  18. M. Ahmed, M. Asghar, M. Yaqoob, N. Munawar, and A. Nabi, Anal. Sci., 2017, 33, 1259.

    Article  CAS  PubMed  Google Scholar 

  19. J. Li, G. Luo, L. He, J. Xu, and J. Lyu, Crit. Rev. Anal. Chem., 2017, 48, 47.

    Article  CAS  PubMed  Google Scholar 

  20. L. Ebdon, S. J. Hill, M. Jameel, W. T. Corns, and P. B. Stockwell, Analyst, 1997, 122, 689.

    Article  CAS  Google Scholar 

  21. K. Zhou, H. Jing, Y. Liu, and H. Zhou, Environ. Sci. Technol., 2012, 35, 147.

    CAS  Google Scholar 

  22. N. Ozbek and S. Akman, J. Anal. At. Spectrom., 2018, 33, 111.

    Article  CAS  Google Scholar 

  23. D. Chen, S. Li, H. Liu, T. Chen, C. Chen, and C. Yu, Anal. Methods, 2014, 6, 9085.

    Article  CAS  Google Scholar 

  24. B. Haghighi and S. F. Kurd, Talanta, 2004, 64, 688.

    Article  CAS  PubMed  Google Scholar 

  25. J. Sanz-Asensio, M. T. Martínez-Soria, M. Plaza-Medina, and M. P. Clavijo, Talanta, 2001, 54, 953.

    Article  CAS  PubMed  Google Scholar 

  26. S. Priyanka, B. Y. Raza, and N. G. Ram, Talanta, 2019, 191, 364.

    Article  Google Scholar 

  27. A. Safavi, B. Haghighi, and F. Peiravian, Anal. Lett., 2003, 36, 479.

    Article  CAS  Google Scholar 

  28. S. Cabredo, J. Galbán, and J. Sanz, Talanta, 1998, 46, 631

    Article  CAS  PubMed  Google Scholar 

  29. K. J. Chae, I. Am, S. K. Yim, and I. S. Kim, Bioresource Technol., 2008, 99, 1.

    Article  CAS  Google Scholar 

  30. K. Takashi, Anal. Lett., 1980, 73, 1001.

    Google Scholar 

  31. D. Dan, R. C. Sandford, and P. J. Worsfold, Analyst, 2005, 130, 227.

    Article  CAS  PubMed  Google Scholar 

  32. M. Zenki, S. Fujiwara, and T. Yokoyama, Anal. Sci., 2006, 22, 77.

    Article  CAS  PubMed  Google Scholar 

  33. Y. Su, X. Li, H. Chen, Y. Lv, and X. Hou, Microchem. J., 2007, 87, 56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 51909012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhao Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Peng, L., Wang, J. et al. Determination of Chemical Oxygen Demand in Water Samples Using Gas-phase Molecular Absorption Spectrometry. ANAL. SCI. 36, 841–846 (2020). https://doi.org/10.2116/analsci.19P444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P444

Keywords

Navigation