Skip to main content
Log in

Introduction of Air-Segmentation Approach to Flow Titration by Feedback-based and Subsequent Fixed Triangular Wave-controlled Flow Ratiometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An air-segmentation approach has been introduced to a feedback-based and subsequent fixed triangular wave-controlled flow ratiometry to suppress axial dispersion in flow titration. The flow rate of a base solution containing an indicator is linearly varied with a control signal, Vc, supplied by a computer. The solution is merged with an acid solution under a constant total flow rate. Air is introduced to the merged solution in order to segment the solution with air bubbles. Both phases are led to a UV/Vis detector without phase separation. Air signals are removed by signal processing. The effect of the lag time between the merging of solutions upstream and the sensing of the corresponding signal downstream is offset by feedback-based upward and downward Vc scans, and thus the Vc that gives the equivalence composition is determined. Subsequently, fixed triangular wave control is applied to a narrower Vc range with a higher scan rate to enhance the throughput rate (maximally 11.8 titrations/min). Air-segmentation has been found to be effective to reduce axial dispersion and to preserve the titrand/titrant composition upon their just being merged. Consequently, the applicable range is extended especially to lower titrand concentration. The proposed method has been successfully applied to various acid-base titrations, including the nonaqueous titration of the Japanese Pharmacopoeia drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. “The Japanese Pharmacopoeia Seventeenth Edition”, 2016, The Ministry of Health, Labor and Welfare, Tokyo.

  2. A. U. Ramsing, J. Ruzicka, and E. H. Hansen, Anal. Chim. Acta, 1981, 129, 1.

    Article  CAS  Google Scholar 

  3. J. F. van Staden and H. du Plessis, Anal. Commun., 1977, 34, 147.

    Article  Google Scholar 

  4. G. Nagy, K. Tóth, and E. Pungor, Anal. Chem., 1975, 47, 1460.

    Article  CAS  Google Scholar 

  5. H. Tanaka and T. Nakano, J. Flow Injection Anal., 2004, 21, 123.

    CAS  Google Scholar 

  6. M. Wójtowicz, J. Kozak, K. Danielewska, and P. Kościelniak, Talanta, 2009, 76, 1006.

    Article  Google Scholar 

  7. V. del Río, M. S. Larrechi, and M. P. Callao, Talanta, 2010, 81, 1572.

    Article  PubMed  Google Scholar 

  8. R. A. C. Lima, L. F. Almeida, W. S. Lyra, L. A. Siqueira, E. N. Gaião, S. S. L. Paiva Junior, and R. L. F. C. Lima, Talanta, 2016, 147, 226.

    Article  CAS  PubMed  Google Scholar 

  9. L. A. Siqueira, I. S. Nunes, P. L. A. Almeida Junior, W. S. Lyra, R. A. N. Andrade, M. C. U. Araújo, L. F. Almeida, and R. A. C. Lima, Microchem. J., 2017, 133, 593.

    Article  CAS  Google Scholar 

  10. M. L. A. Lima and B. F. Reis, Microchem. J., 2017, 135, 207.

    Article  CAS  Google Scholar 

  11. P. Paengnakorn, S. Chanpaka, K. Watla-Iad, W. Wongwilai, and K. Grudpan, Anal. Sci., 2019, 35, 219.

    Article  CAS  PubMed  Google Scholar 

  12. J. Néri-Quiroz, F. Canto, L. Guillerme, L. Couston, A. Magnaldo, and V. Vegas, Talanta, 2019, 196, 237.

    Article  PubMed  Google Scholar 

  13. S. Karita and T. Kaneta, Anal. Chem., 2014, 86, 12108.

    Article  CAS  PubMed  Google Scholar 

  14. S. Karita and T. Kaneta, Anal. Chim. Acta, 2016, 924, 60.

    Article  CAS  PubMed  Google Scholar 

  15. W. J. Blaedel and R. H. Laessig, Anal. Chem., 1964, 36, 1617.

    Article  CAS  Google Scholar 

  16. W. J. Blaedel and R. H. Laessig, Anal. Chem., 1965, 37, 332.

    Article  CAS  Google Scholar 

  17. H. Tanaka, P. K. Dasgupta, and J. Huang, Anal. Chem., 2000, 72, 4713.

    Article  CAS  PubMed  Google Scholar 

  18. P. K. Dasgupta, H. Tanaka, and K. D. Jo, Anal. Chim. Acta, 2001, 435, 289.

    Article  CAS  Google Scholar 

  19. P. K. Dasgupta and K. D. Jo, Electroanalysis, 2002, 14, 1383.

    Article  CAS  Google Scholar 

  20. K. D. Jo and P. K. Dasgupta, Talanta, 2003, 60, 131.

    Article  CAS  PubMed  Google Scholar 

  21. M. Fais, C. Schwarz, and F. C. Leinwebr, Chem. Ing. Tech., 2016, 88, 793.

    Article  CAS  Google Scholar 

  22. T. Aydan, A. Kitagawa, M. Takeuchi, and H. Tanaka, J. Flow Injection Anal., 2008, 25, 65.

    CAS  Google Scholar 

  23. H. Tanaka and T. Baba, Talanta, 2005, 67, 848.

    Article  CAS  PubMed  Google Scholar 

  24. H. Tanaka and T. Baba, Anal. Sci., 2005, 21, 615.

    Article  CAS  PubMed  Google Scholar 

  25. N. Kakiuchi, A. Miyazaki, A. Fujikawa, M. Takeuchi, and H. Tanaka, J. Flow Injection Anal., 2017, 34, 11.

    CAS  Google Scholar 

  26. A. Miyazaki, N. Kakiuchi, K. Okamoto, M. Takeuchi, and H. Tanaka, J. Flow Injection Anal., 2019, 36, 97.

    CAS  Google Scholar 

  27. M. K. Sasaki, D. L. Rocha, F. R. P. Rocha, and E. A. G. Zagatto, Anal. Chim. Acta, 2016, 902, 123.

    Article  CAS  PubMed  Google Scholar 

  28. K. Inui, T. Uemura, T. Ogusu, M. Takeuchi, and H. Tanaka, Anal. Sci., 2011, 27, 305.

    Article  CAS  PubMed  Google Scholar 

  29. H. Yoshida, K. Inui, M. Takeuchi, and H. Tanaka, Anal. Sci., 2012, 28, 523.

    Article  CAS  PubMed  Google Scholar 

  30. T. Ogusu, K. Uchimoto, M. Takeuchi, and H. Tanaka, Talanta, 2014, 118, 123.

    Article  CAS  PubMed  Google Scholar 

  31. L. T. Skeggs, Am. J. Clin. Pathol., 1957, 28, 311.

    Article  CAS  PubMed  Google Scholar 

  32. L. T. Skeggs, Anal. Chem., 1966, 38, 31A.

    Article  CAS  PubMed  Google Scholar 

  33. H. Tanaka, T. Mima, M. Takeuchi, and H. Iida, Talanta, 2008, 77, 576.

    Article  Google Scholar 

  34. L. R. Snyder and H. J. Adler, Anal. Chem., 1976, 48, 1017.

    Article  CAS  Google Scholar 

  35. L. R. Snyder and H. J. Adler, Anal. Chem., 1976, 48, 1022.

    Article  CAS  Google Scholar 

  36. E. H. Hansen, Advances in Flow Injection and Related Techniques, ed. S. D. Kolev and I. D. McKelvie, 2008, Chap. 1, Elsevier, Amsterdam, 25.

  37. V. Cerdà and J. M. Estela, Advances in Flow Analysis, ed. M. Trojanowicz, 2008, Chap. 2, Wiley-VCH, Weinheim, 45.

  38. J. Ruzicka and E. H. Hansen, Flow Injection Analysis, 2nd ed., 1988, John Wiley & Sons, New York, 31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideji Tanaka.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochiai, J., Oka, S., Hirasaka, T. et al. Introduction of Air-Segmentation Approach to Flow Titration by Feedback-based and Subsequent Fixed Triangular Wave-controlled Flow Ratiometry. ANAL. SCI. 36, 703–707 (2020). https://doi.org/10.2116/analsci.19P401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P401

Keywords

Navigation