Skip to main content
Log in

Amplified Analysis of DNA or Proteins by TdT-generated DNAzyme

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Sensitive and specific detection of nucleic acids or proteins, which act as biomarkers, is of great importance in disease diagnosis. By combing the concept and operation of an endonuclease-assisted target-responsive amplification method and peroxidase-mimic DNAzyme generated by terminal deoxynucleotidyl transferase (TdT), a novel and facile colorimetric biosensor was developed for DNA and protein. Target DNA and thrombin were chosen as representative biomolecules. The production of cleavage fragments can only be triggered by specific target binding and the following nicking process, which do not occur spontaneously. In the signal collection part, numerous guanine-rich DNA were produced through the prolongation of cleavage fragments by TdT and formed highly effective DNAzyme with hemin. In this novel amplification method, we succeeded in realizing sensitive and specific detection of target DNA and thrombin. Under optimal conditions, target DNA can be detected as low as 1 pM, and thrombin with a detection limit of 100 pM. The method also proves the potential versatility and feasibility of TdT-generated DNAzyme in various bio-analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Shipp, Biotechnology Healthcare, 2006, 3, 35.

    PubMed  PubMed Central  Google Scholar 

  2. K. J. Livak and T. D. Schmittgen, Methods, 2001, 25, 402.

    Article  CAS  PubMed  Google Scholar 

  3. P. M. Lizardi, X. H. Huang, Z. G. Zhu, P. Bray-Ward, D. C. Thomas, and D. C. Ward, Nat. Genet., 1998, 19, 225.

    Article  CAS  PubMed  Google Scholar 

  4. A. Y. Chen, S. Y. Ma, Y. Zhuo, Y. Q. Chai, and R. Yuan, Anal. Chem., 2016, 88, 3203.

    Article  CAS  PubMed  Google Scholar 

  5. G. T. Walker, M. S. Fraiser, J. L. Schram, M. C. Little, J. G. Nadeau, and D. P. Malinowski, Nucleic Acids Res., 1992, 20, 1691.

    Article  CAS  PubMed Central  Google Scholar 

  6. N. Ying, C. J. Ju, Z. Y. Li, W. S. Liu, and J. Y. Wan, Talanta, 2017, 164, 432.

    Article  CAS  PubMed  Google Scholar 

  7. N. Ying, T. F. Sun, Z. B. Chen, G. P. Song, B. Y. Qi, S. J. Bu, X. W. Sun, J. Y. Wan, and Z. H. Li, Anal. Biochem., 2017, 528, 7.

    Article  CAS  PubMed  Google Scholar 

  8. P. Travascio, A. J. Bennet, D. Y. Wang, and D. Sen, Chem. Biol., 1996, 6, 779.

    Article  Google Scholar 

  9. P. Travascio, P. K. Witting, A. G. Mauk, and D. Sen, J. Am. Chem. Soc., 2001, 123, 1337.

    Article  CAS  PubMed  Google Scholar 

  10. T. Li, S. J. Dong, and E. K. Wang, Anal. Chem., 2009, 81, 2144.

    Article  CAS  PubMed  Google Scholar 

  11. D. Li, A. Wieckowska, and I. Willner, Angew. Chem. Int. Ed., 2008, 120, 3927.

    Article  Google Scholar 

  12. J. Elbaz, B. Shlyahovsky, and I. Willner, Chem. Commun., 2008, 13, 1569.

    Article  Google Scholar 

  13. G. Pelossof, R. Tel-Vered, J. Elbaz, and I. Willner, Anal. Chem., 2010, 82, 4396.

    Article  CAS  PubMed  Google Scholar 

  14. D. Li, B. Shlyahovsky, J. Elbaz, and I. Willner, J. Am. Chem. Soc., 2007, 129, 5804.

    Article  CAS  PubMed  Google Scholar 

  15. T. Niazov, V. Pavlov, Y. Xiao, R. Gill, and I. Willner, Nano Lett., 2004, 4, 1683.

    Article  CAS  Google Scholar 

  16. Z. L. Ge, M. H. Lin, P. Wang, H. Pei, J. Yan, J. Y. Sho, Q. Huang, D. N. He, C. H. Fan, and X. L. Zuo, Anal. Chem., 2014, 86, 2124.

    Article  CAS  PubMed  Google Scholar 

  17. L. H. Tang, Y. Liu, M. M. Ali, D. K. Kang, W. A. Zhao, and J. H. Li, Anal. Chem., 2012, 84, 4711.

    Article  CAS  PubMed  Google Scholar 

  18. H. Xu, S. X. Zhang, C. H. Ouyang, Z. M. Wang, D. Wu, Y. Y. Liu, Y. F. Liu, and Z. S. Wu, Talanta, 2019, 192, 175.

    Article  CAS  PubMed  Google Scholar 

  19. X. Hun, Y. Meng, S. Wang, Z. Mei, and X. Luo, Sens. Actuators, B, 2017, 246, 734.

    Article  Google Scholar 

  20. W. Li, Z. L. Liu, H. Lin, Z. Nie, and J. H. Chen, Anal. Chem., 2010, 82, 1935.

    Article  CAS  PubMed  Google Scholar 

  21. Z. L. Liu, W. Li, Z. Nie, F. F. Peng, Y. Huang, and S. Z. Yao, Chem. Commun., 2014, 50, 6875.

    Article  CAS  Google Scholar 

  22. Z. L. Liu, X. Y. Luo, Z. Li, Y. Huang, Z. Nie, H. H. Wang, and S. Z. Yao, Anal. Chem., 2017, 89, 1892.

    Article  CAS  PubMed  Google Scholar 

  23. T. H. Shi, M. L. Wang, H. Li, M. Wang, X. Y. Luo, Y. Huang, H. H. Wang, Z. Nie, and S. Z. Yao, Sci. Rep., 2018, 8, 5551.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, and I. Willner, J. Am. Chem. Soc., 2004, 126, 7430.

    Article  CAS  PubMed  Google Scholar 

  25. C. Teller, S. Shimron, and I. Willner, Anal. Chem., 2009, 81, 9114.

    Article  CAS  PubMed  Google Scholar 

  26. M. G. Deng, D. Zhang, Y. Y. Zhou, and X. Zhou, J. Am. Chem. Soc., 2008, 130, 13095.

    Article  CAS  PubMed  Google Scholar 

  27. T. Li, S. J. Dong, and E. K. Wang, Chem. Commun., 2007, 41, 4209.

    Article  Google Scholar 

  28. Y. Weizmann, M. K. Beissenhirtz, Z. Cheglakov, R. Nowarski, M. Kotler, and I. Willner, Angew. Chem. Int. Ed., 2006, 45, 7384.

    Article  CAS  Google Scholar 

  29. Y. Q. He, K. Zeng, A. S. Gurung, M. Baloda, H. Xu, X. B. Zhang, and G. D. Liu, Anal. Chem., 2010, 82, 7169.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Xu, Y. H. Liu, Y. Wu, X. H. Xia, Y. Q. Liao, and Q. G. Li, Anal. Chem., 2014, 86, 5611.

    Article  CAS  PubMed  Google Scholar 

  31. L. Stefan, F. Denat, and D. Monchaud, J. Am. Chem. Soc., 2011, 133, 20405.

    Article  CAS  PubMed  Google Scholar 

  32. J. Elbaz, M. Moshe, B. Shlyahovsky, and I. Willner, Chem. Eur. J., 2009, 15, 3411.

    Article  CAS  PubMed  Google Scholar 

  33. D. M. Köster, D. Haselbach, H. Lehrach, and H. Seitz, Molecular BioSystems, 2011, 7, 2882.

    Article  PubMed  Google Scholar 

  34. M. Famulok and G. Mayer, Nature, 2006, 439, 666.

    Article  CAS  PubMed  Google Scholar 

  35. S. E. Osborn and A. D. Ellington, Chem. Rev., 1997, 97, 349.

    Article  Google Scholar 

  36. C. F. Zhu, Y. Q. Wen, D. Li, L. H. Wang, S. P. Song, C. H. Fan, and I. Willner, Chem. Eur. J., 2009, 15, 11898.

    Article  CAS  PubMed  Google Scholar 

  37. Y. Huang, J. Chen, S. L. Zhao, M. Shi, Z. F. Chen, and H. Liang, Anal. Chem., 2013, 85, 4423.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21705163, 21601204), Natural Science Foundation of Hunan Province (2019JJ50737), the Research Project of the National University of Defense Technology (ZK18-03-39) and the Open Subject of State Key Laboratory of Chemo/Biosensing and Chemometrics (2017011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfang Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Liu, T., Tao, CA. et al. Amplified Analysis of DNA or Proteins by TdT-generated DNAzyme. ANAL. SCI. 36, 835–840 (2020). https://doi.org/10.2116/analsci.19P387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P387

Keywords

Navigation