Skip to main content
Log in

A Highly Selective and Ultrasensitive Fluorescent Probe for Monitoring Hg2+ and Its Applications in Real Water Samples

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Mercury ions as high toxic pollutants have received wide-spread attention because of their poisonousness, persistence and enrichment. To better understand the distribution of mercury species and supplement more detailed toxicological research, it is necessary to develop some methods for monitoring mercury ions with high sensitivity and selectivity. Therefore, a simple rhodol-based highly selective fluorescent probe, RH-Hg, has been developed for monitoring Hg2+ with thiocarbamate as the recognition receptor. The probe RH-Hg can quantificationally detect mercury ions in aqueous solution assisted by hydrogen peroxide (H2O2), and it can discriminate Hg2+ through “naked-eye” observation of the color changes from light orange to dark pink. Finally, the practical applications of the probe RH-Hg in the river water further demonstrated that it will be an effective and economical tool for monitoring the distribution of Hg2+ in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Jiang, J. B. Shi, and X. B. Feng, Environ. Sci. Technol., 2006, 40, 3672.

    Article  CAS  Google Scholar 

  2. X. B. Feng, D. Foucher, H. Hintelmann, H. Y. Yan, T. R. He, and G. L. Qiu, Environ. Sci. Technol., 2010, 44, 3363.

    Article  CAS  PubMed  Google Scholar 

  3. X. Huang, M. M. Li, H. R. Friedli, Y. Song, D. Chang, and L. Zhu, Environ. Sci. Technol., 2011, 45, 9442.

    Article  CAS  PubMed  Google Scholar 

  4. K. F. Lambert, D. C. Evers, K. A. Warner, S. L. King, and N. E. Selin, Environ. Res., 2012, 119, 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. L. Foster, G. A. Stern, M. A. Pazerniuk, B. Hickie, W. Walkusz, F. Y. Wang, and R. W. Macdonald, Environ. Sci. Technol., 2012, 46, 12952.

    Article  CAS  PubMed  Google Scholar 

  6. B. Zhu, W. Wang, L. Liu, H. Jiang, B. Du, and Q. Wei, Sens. Actuators, B, 2014, 191, 605.

    Article  CAS  Google Scholar 

  7. W. Yue, G. Min, and C. Guo, Anal. Chem., 2018, 90, 9769.

    Article  Google Scholar 

  8. Q. Duan, H. Zhu, C. Liu, R. Yuan, Z. Fang, Z. Wang, P. Jia, Z. Li, W. Sheng, and B. Zhu, Analyst, 2019, 144, 1426.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Zhao and Z. Zhong, J. Am. Chem. Soc., 2006, 128, 9988.

    Article  CAS  PubMed  Google Scholar 

  10. G. Dhaka, J. Singh, and N. Kaur, Inorg. Chim. Acta, 2017, 462, 152.

    Article  CAS  Google Scholar 

  11. B. Gu, L. Huang, W. Su, X. Duan, H. Li, and S. Yao, Anal. Chim. Acta, 2017, 954, 97.

    Article  CAS  PubMed  Google Scholar 

  12. A. Singh, N. Singh, and D. O. Jang, Tetrahedron, 2016, 72, 3535.

    Article  CAS  Google Scholar 

  13. L. Feng, Y. Deng, X. Wang, and M. Liu, Sens. Actuators, B, 2017, 245, 441.

    Article  CAS  Google Scholar 

  14. H. N. Kim, W. X. Ren, and J. S. Kim, Chem. Soc. Rev., 2012, 47, 3210.

    Article  Google Scholar 

  15. F. Wang, S. W. Nam, Z. Guo, S. Park, and J. Yoon, Sens. Actuators, B, 2012, 161, 948.

    Article  CAS  Google Scholar 

  16. H. Zheng, X. Q. Zhan, Q. N. Bian, and X. J. Zhang, Chem. Commun., 2013, 49, 429.

    Article  CAS  Google Scholar 

  17. A. Chatterjee, M. Banerjee, D. G. Khandare, and R. U. Gawas, Anal. Chem., 2017, 89, 12698.

    Article  CAS  PubMed  Google Scholar 

  18. J. Du, M. Hu, J. Fan, and X. Peng, Chem. Soc. Rev., 2012, 47, 4511.

    Article  Google Scholar 

  19. Q. Duan, X. Lv, C. Liu, Z. Geng, F. Zhang, W. Sheng, Z. Wang, P. Jia, Z. Li, H. Zhu, and B. Zhu, Ind. Eng. Chem. Res., 2019, 58, 11.

    Article  CAS  Google Scholar 

  20. H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, Chem. Soc. Rev., 2012, 41, 3210.

    Article  CAS  PubMed  Google Scholar 

  21. C. Duan, J.-F. Zhang, Y. Hu, L. Zeng, D. Su, and G.-M. Bao, Dyes Pigm., 2019, 162, 459.

    Article  CAS  Google Scholar 

  22. C. Duan, M. Won, P. Verwilst, J. Xu, H. S. Kim, L. Zeng, and J. S. Kim, Anal. Chem., 2019, 97, 4172.

    Article  Google Scholar 

  23. C. Duan, J.-F. Zhang, Y. Hu, L. Zeng, D. Su, and G.-M. Bao, Dyes Pigm., 2019, 162, 459.

    Article  CAS  Google Scholar 

  24. P. Jia, Z. Zhuang, C. Liu, Z. Wang, Q. Duan, Z. Li, H. Zhu, B. Du, B. Zhu, W. Sheng, and B. Kang, Anal. Chim. Acta, 2019, 1052, 131.

    Article  CAS  PubMed  Google Scholar 

  25. B. Zhu, L. Wu, M. Zhang, Y. Wang, Z. Zhao, Z. Wang, Q. Duan, P. Jia, and C. Liu, Sens. Actuators, B, 2018, 263, 103.

    Article  CAS  Google Scholar 

  26. Y. Li, H. Zhou, W. Chen, G. Sun, L. Sun, and J. Su, Tetrahedron, 2016, 72, 5620.

    Article  CAS  Google Scholar 

  27. T. Minami, Y. Sasaki, T. Minamiki, P. Koutnik, P. Anzenbacher, and S. Tokito, Chem. Commun., 2015, 51, 17666.

    Article  CAS  Google Scholar 

  28. B. Diaz de Grenu, J. Garcia-Calvo, J. Cuevas, G. Garcia-Herbosa, B. Garcia, N. Busto, S. Ibeas, T. Torroba, B. Torroba, A. Herrera, and S. Pons, Chem. Sci., 2015, 6, 3757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Y. Chen, C. Yang, Z. Yu, B. Chen, and Y. Han, RSC Adv., 2015, 5, 82531.

    Article  CAS  Google Scholar 

  30. J. Zheng, Y. Nie, Y. Hu, J. Li, Y. Li, Y. Jiang, and R. Yang, Chem. Commun., 2013, 49, 6915.

    Article  CAS  Google Scholar 

  31. W. Lin, X. Cao, Y. Ding, L. Yuan, and L. Long, Chem. Commun., 2010, 46, 3529.

    Article  CAS  Google Scholar 

  32. W. Shu, L. Yan, J. Liu, Z. Wang, S. Zhang, C. Tang, C. Liu, B. Zhu, and B. Du, Ind. Eng. Chem. Res., 2015, 54, 8056.

    Article  CAS  Google Scholar 

  33. M. G. Choi, Y. H. Kim, J. E. Namgoong, and S. K. Chang, Chem. Commun., 2009, 24, 3560.

    Article  Google Scholar 

  34. X. Zhang, Y. Xiao, and X. Qian, Angew. Chem. Int. Ed., 2008, 47, 8025.

    Article  CAS  Google Scholar 

  35. W. Shi and H. Ma, Chem. Commun., 2008, 16, 1856.

    Article  Google Scholar 

  36. L. J. Fan, Y. Zhang, and W. E. Jones, Macromolecules, 2005, 38, 2844.

    Article  CAS  Google Scholar 

  37. B. Zhu, J. Zhao, H. Y. L. Yan, Q. Wei, and B. Du, Opt. Mater., 2013, 35, 2220.

    Article  CAS  Google Scholar 

  38. B. Zhu, L. Wu, M. Zhang, Z. Zhao, Z. Wang, Q. Duan, P. Jia, Z. Li, H. Zhu, and C. Liu, Sens. Actuators, B, 2018, 267, 589.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the National Natural Science Foundation of China (21607053 and 21777053), and Shandong Provincial Natural Science Foundation (ZR2017MB014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caiyun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Duan, Q., Zhang, X. et al. A Highly Selective and Ultrasensitive Fluorescent Probe for Monitoring Hg2+ and Its Applications in Real Water Samples. ANAL. SCI. 35, 1251–1254 (2019). https://doi.org/10.2116/analsci.19P232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P232

Keywords

Navigation