Skip to main content
Log in

An Application of Photoactivatable Substrate for the Evaluation of Epithelial-mesenchymal Transition Inhibitors

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Epithelial-mesenchymal transition (EMT), phenotypic changes in cell adhesion and migration, is involved in cancer invasion and metastasis, hence becoming a target for anti-cancer drugs. In this study, we report a method for the evaluation of EMT inhibitors by using a photoactivatable gold substrate, which changes from non-cell-adhesive to celladhesive in response to light. The method is based on the geometrical confinement of cell clusters and the subsequent migration induction by controlled photoirradiation of the substrate. As a proof-of-concept experiment, a known EMT inhibitor was successfully evaluated in terms of the changes in cluster area or leader cell appearance, in response to biochemically and mechanically induced EMT. Furthermore, an application of the present method for microbial secondary metabolites identified nanaomycin H as an EMT inhibitor, potentially killing EMTed cells in disseminated conditions. These results demonstrate the potential of the present method for screening new EMT inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kalluri and R. A. Weinberg, J. Clin. Invest., 2009, 119, 1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S. Lamouille, J. Xu, and R. Derynck, Nat. Rev. Mol. Cell Biol., 2014, 15, 178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. H. Acloque, M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto, J. Clin. Invest., 2009, 119, 1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Wu, M. Sarkissyan, and J. Vadgama, J. Clin. Med., 2016, 5, 13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. F. Marcucci, G. Stassi, and R. de Maria, Nat. Rev. Drug Discov., 2016, 15, 311.

    Article  CAS  PubMed  Google Scholar 

  6. G. Moreno-Bueno, H. Peinado, P. Molina, D. Olmeda, E. Cubillo, V. Santos, J. Palacios, F. Portillo, and A. Cano, Nat. Protocols, 2009, 4, 1591.

    Article  CAS  PubMed  Google Scholar 

  7. J. Johzuka, T. Ona, and M. Nomura, Anal. Sci., 2018, 34, 1189.

    Article  CAS  PubMed  Google Scholar 

  8. M. Vinci, S. Gowan, F. Boxall, L. Patterson, M. Zimmermann, W. Court, C. Lomas, M. Mendiola, D. Hardisson, and S. A. Eccles, BMC Biology, 2012, 10, 29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Arai, T. Eguchi, M. M. Rahman, R. Sakamoto, N. Masuda, T. Nakatsura, S. K. Calderwood, K.-i. Kozaki, and M. Itoh, Plos One, 2016, 11, e0162394

    Article  PubMed  PubMed Central  Google Scholar 

  10. Z. Qin, W. He, J. Tang, Q. Ye, W. Dang, Y. Lu, J. Wang, G. Li, Q. Yan, and J. Ma, J. Cell Physiol., 2016, 231, 120.

    Article  CAS  PubMed  Google Scholar 

  11. J. Farrell, C. Kelly, J. Rauch, K. Kida, A. García-Mufíoz, N. Monsefi, B. Turriziani, C. Doherty, J. P. Mehta, D. Matallanas, J. C. Simpson, W. Kolch, and A. von Kriegsheim, J. Proteome Res., 2014, 13, 2874.

    Article  CAS  PubMed  Google Scholar 

  12. M. Théry, J. Cell Sci., 2010, 123, 4201.

    Article  PubMed  Google Scholar 

  13. S. Funano, N. Tanaka, and Y. Tanaka, Anal. Sci., 2017, 33, 723.

    Article  CAS  PubMed  Google Scholar 

  14. V. Vogel and M. Sheetz, Nat. Rev. Mol. Cell Biol., 2006, 7, 265.

    Article  CAS  PubMed  Google Scholar 

  15. R. McBeath, D. M. Pirone, M. N. Celeste, K. Bhadriraju, and C. S. Chen, Dev. Cell, 2004, 6, 483.

    Article  CAS  PubMed  Google Scholar 

  16. C. M. Nelson, R. P. Jean, J. L. Tan, W. F. Liu, N. J. Sniadecki, A. A. Spector, and C. S. Chen, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 11594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. N. Gjorevski, E. Boghaert, and C. M. Nelson, Cancer Microenviron., 2012, 5, 29.

    Article  PubMed  Google Scholar 

  18. J. Nakanishi, Chem. Rec., 2017, 17, 611.

    Article  CAS  PubMed  Google Scholar 

  19. C. G. Rolli, H. Nakayama, K. Yamaguchi, J. P. Spatz, R. Kemkemer, and J. Nakanishi, Biomaterials, 2012, 33, 2409.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Shimizu, H. Boehm, K. Yamaguchi, J. P. Spatz, and J. Nakanishi, Plos One, 2014, 9, e91875

    Article  PubMed  PubMed Central  Google Scholar 

  21. Y. Shimizu, M. Kamimura, S. Yamamoto, S. A. Abdellatef, K. Yamaguchi, and J. Nakanishi, Anal. Sci., 2016, 32, 1183.

    Article  CAS  PubMed  Google Scholar 

  22. M. Kamimura, M. Sugawara, S. Yamamoto, K. Yamaguchi, and J. Nakanishi, Biomater. Sci., 2016, 4, 933.

    Article  CAS  PubMed  Google Scholar 

  23. A. A. Khalil and P. Friedl, Integr. Biol., 2010, 2, 568.

    Article  Google Scholar 

  24. T. Kimura, Y. Inahashi, H. Matsuo, T. Suga, M. Iwatsuki, K. Shiomi, Y. Takahashi, S. Omura, and T. Nakashima, J. Antibiot., 2018, 71, 606.

    Article  CAS  Google Scholar 

  25. T. Nakashima, T. Kimura, R. Miyano, H. Matsuo, T. Hirose, A. Kimishima, K. Nonaka, M. Iwatsuki, J. Nakanishi, Y. Takahashi, and S. Omura, J. Biosci. Bioeng., 2017, 123, 765.

    Article  CAS  PubMed  Google Scholar 

  26. T. Nakashima, Y. Takahashi, and S. Omura, Biochem. Pharmacol., 2017, 134, 42.

    Article  CAS  PubMed  Google Scholar 

  27. J. Nakanishi, H. Nakayama, K. Yamaguchi, A. J. Garcia, and Y. Horiike. Sci. Technol. Adv. Mater., 2011, 12, 044608.

    Article  PubMed  PubMed Central  Google Scholar 

  28. S. Marlar, S. A. Abdellatef, and J. Nakanishi, Acta Biomater., 2016, 39, 106.

    Article  CAS  PubMed  Google Scholar 

  29. J. Nakanishi, “Methods in Cell Biology”, ed. M. Piel and M. Théry, 2014, Vol. 120, Chap. 7, Burlington, MA, 117.

    Article  PubMed  Google Scholar 

  30. S. K. Halder, R. D. Beauchamp, and P. K. Datta, Neoplasia, 2005, 7, 509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Corallino, M. G. Malabarba, M. Zobel, P. P. Di Fiore, and G. Scita, Front. Oncol., 2015, 5, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Y. Takahashi and T. Nakashima, Antibiotics, 2018. 7, 45.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Y.-H. Chang, H. Yokota, K. Abe, C.-T. Tang, and M.-D. Tasi, J. Med. Biol. Eng., 2017, 37, 18.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Japan Society for Promotion of Science, Kakenhi (No. 18H02010 and 18K19946). We thank to Prof. Kazuo Yamaguchi (Kanagawa Univ.) for the photocleavable disulfide molecule.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Nakanishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, J., Sugiyama, K., Matsuo, H. et al. An Application of Photoactivatable Substrate for the Evaluation of Epithelial-mesenchymal Transition Inhibitors. ANAL. SCI. 35, 65–69 (2019). https://doi.org/10.2116/analsci.18SDP07

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18SDP07

Keywords

Navigation