Skip to main content

Advertisement

Log in

Application of Dopamine as an Electroactive Ligand for the Determination of Aluminum in Biological Fluids

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Dopamine (3,4-dihydroxyphenylethylamine, DA) is applied as an electroactive chelant for indirect determination of aluminum (Al) in biological fluids. It is observed that the decrease of the differential pulse voltammetric (DPV) anodic peak current of DA is linear with the increase of Al concentration. Under optimum experimental conditions (pH 8.6, 2.0 × 10-4 M DA, and 0.03 M NH4Ac-NH3•H2O buffer solution), two linear ranges, 5.0 × 10-8 - 4.0 × 10-7 M and 4.0 × 10-7 - 7.2 × 10-6 M AlIII, are obtained. The detection limit of Al is 1.9 × 10-8 M and the relative standard deviation for 4 × 10-6 M AlIII is 3.1% (N = 8). Many biologically active foreign species have been selected for interference. Excellent recoveries and accuracy have been obtained in the measurements of Al in biological samples such as synthetic renal dialysate, Ringer’s solution, human whole blood, cerebrospinal fluid of demented patient, and urine of diabetic patient. The methodological principle that Al complexes with DA on the electroactive position result in the depression of electrochemical activities of DA has been verified by comparing both the electrochemical behaviors and the spectroscopic responses like UV-vis and Raman of DA in the presence and in the absence of Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Williams, J. Inorg. Biochem., 2000, 79, 275.

    Article  CAS  PubMed  Google Scholar 

  2. P. Zatta, E. Lain, and C. Cagnolin, Eur. J. Biochem., 2000, 267, 3049.

    Article  CAS  PubMed  Google Scholar 

  3. C. N. Martyn, Lancet, 1990, 336, 430.

    Article  Google Scholar 

  4. J. Savory, J. Clin. Chem., 1994, 40, 1477.

    Article  CAS  Google Scholar 

  5. J. C. K. Lai, J. F. Guest, L. Lim, and A. N. Davison, Biochem. Soc. Trans., 1978, 6, 1010.

    Article  CAS  PubMed  Google Scholar 

  6. T. Kiss, I. Sóvágó, and R. B. Martin, J. Am. Chem. Soc., 1989, 111, 3611.

    Article  CAS  Google Scholar 

  7. S. Kumar, Neurosci. Lett., 1998, 248, 121.

    Article  CAS  PubMed  Google Scholar 

  8. J. Patock and J. Bajgar, Inorg. Chim. Acta, 1987, 135, 161.

    Article  Google Scholar 

  9. P. Vesna, M. Dejan, and S. Marina, Jugosl. Med. Biochem., 1997, 16, 203.

    Google Scholar 

  10. J. S. Perlmutter, L. W. Tempel, K. J. Black, D. Parkinson, and R. D. Todd, Neurology, 1997, 49, 1432.

    Article  CAS  PubMed  Google Scholar 

  11. J. Zhang, H. Xu, and J. L. Ren, Anal. Chim. Acta, 2000, 405, 31.

    Article  CAS  Google Scholar 

  12. N. I. Ershova and V. M. Ivanov, Anal. Chim. Acta, 2000, 408, 145.

    Article  CAS  Google Scholar 

  13. S. B. Erdenmoglu and K. Pyrzynisku, Anal. Chim. Acta, 2000, 411, 81.

    Article  Google Scholar 

  14. R. He and J. Wang, Anal. Chim. Acta, 2000, 412, 241.

    Article  CAS  Google Scholar 

  15. J. P. Landsberg, B. Mcdonald, and F. Watt, Nature, 1992, 360, 65.

    Article  CAS  PubMed  Google Scholar 

  16. M. A. Lovell, W. D. Ehmann, and W. R. Markesbery, Ann. Neurol., 1993, 33, 36.

    Article  CAS  PubMed  Google Scholar 

  17. A. Taylor, R. J. Briggs, and C. Cevik, Clin. Chem., 1994, 40, 1517.

    Article  CAS  PubMed  Google Scholar 

  18. J. Wang, P. A. M. Farias, and J. S. Mahmoud, Anal. Chim. Acta, 1985, 172, 57.

    Article  CAS  Google Scholar 

  19. J. Opydo, Talanta, 1997, 44, 1081.

    Article  CAS  PubMed  Google Scholar 

  20. D. V. Vukomanovic, J. A. Pace, and G. W. Vanloon, Can. J. Chem., 1991, 69, 1418.

    Article  CAS  Google Scholar 

  21. A. J. Downard, H. K. J. Powell, and S. Xu, Anal. Chim. Acta, 1992, 262, 339.

    Article  CAS  Google Scholar 

  22. F. P. Zhang, S. P. Bi, F. Liu, and N. S. Bian, Anal. Lett., 2000, 33, 209.

    Article  CAS  Google Scholar 

  23. F. P. Zhang, S. P. Bi, J. R. Zhang, N. S. Bian, and F. Liu, Analyst, 2000, 125, 1299.

    Article  CAS  PubMed  Google Scholar 

  24. F. P. Zhang, S. P. Bi, F. Liu, and N. S. Bian, Chem. J. Chin. Univ., 2000, 21, 1205.

    CAS  Google Scholar 

  25. F. P. Zhang, S. P. Bi, H. Z. Li, Y. J. Chen, and L. M. Dai, Electroanalysis, 2001, 13, 1054.

    Article  CAS  Google Scholar 

  26. R. F. Lane and A. T. Hubbard, Anal. Chem., 1976, 48, 1287.

    Article  CAS  PubMed  Google Scholar 

  27. E. Thomas, R. G. John, and H. Mattew, J. Org. Chem., 1974, 39, 1980.

    Google Scholar 

  28. T. E. Young and B. W. Babbitt, J. Org. Chem., 1983, 48, 562.

    Google Scholar 

  29. J. Y. Li and B. M. Christensen, J. Electroanal. Chem., 1994, 375, 219.

    Article  CAS  Google Scholar 

  30. A. E. Martell and R. J. Motekaitis, in “Determination and Use of Stability Constants”, 2nd ed., 1992, VCH Publishers, New York, 75–88.

    Google Scholar 

  31. P. Elving, J. Pure Appl. Chem., 1963, 7, 432.

    Article  Google Scholar 

  32. R. B. Martin, J. Inorg. Biochem., 1991, 44, 141.

    Article  CAS  Google Scholar 

  33. J. H. David and S. F. Gordon, Analyst, 1985, 110, 243.

    Article  Google Scholar 

  34. M. E. Carrera, V. Rodriguez, M. I. Toral, and P. Richter, Anal. Lett., 1993, 26, 2575.

    Article  CAS  Google Scholar 

  35. K. E. Johnson and R. G. Treble, Can. J. Chem., 1993, 71, 824.

    Article  CAS  Google Scholar 

  36. S. Sarre, Y. Michotte, P. Herrgodts, D. Deleu, N. D. Klipped, and G. Ebinger, J. Chromatogr., 1992, 575, 207.

    Article  CAS  PubMed  Google Scholar 

  37. R. J. Slingerland, A. B. P. Van Kuilenburg, J. M. Bodlaender, H. Overmars, P. A. Voute, and A. H. Van Gennip, J. Chromatogr. B, 1998, 716, 65.

    Article  CAS  Google Scholar 

  38. G. Erdogdu, H. B. Mark, and A. E. Karagozler, Anal. Lett, 1996, 29, 221.

    Article  CAS  Google Scholar 

  39. J. M. Zen, W. M. Wang, and G. Ilangovan, Anal. Chim. Acta, 1998, 372, 315.

    Article  CAS  Google Scholar 

  40. A. Ciszewski and G. Milczarek, Anal. Chem., 1999, 71, 1055.

    Article  CAS  PubMed  Google Scholar 

  41. S. L. Hafizi, Z. L. Kruk, and J. A. Stamford, J. Electroanal. Chem., 1990, 283, 125.

    Article  CAS  Google Scholar 

  42. R. F. Lane and A. T. Hubbard, Anal. Chem., 1976, 48, 1287.

    Article  CAS  PubMed  Google Scholar 

  43. R. S. Nicholson and I. Shain, Anal. Chem., 1964, 36, 706.

    Article  CAS  Google Scholar 

  44. E. Bishop and W. Hussein, Analyst, 1984, 109, 627.

    Article  CAS  Google Scholar 

  45. A. W. Sternson, R. Mccreery, B. Feinberg, and R. N. Adams, J. Electroanal. Chem. Interf. Electrochem., 1973, 46, 313.

    Article  CAS  Google Scholar 

  46. M. L. McGlashen, K. L. Davis, and M. D. Morris, Anal. Chem., 1990, 62, 846.

    Article  CAS  PubMed  Google Scholar 

  47. W. J. Barreto, S. Ponzoni, and P. Sassi, Spectrochim. Acta, Part A, 1999, 55A, 65.

    Google Scholar 

  48. R. Saito, K. Harada, M. Nunokawa, T. Kashimoto, and R. Wakusawa, Iwate Igaku Zasshi, 1998, 50, 143.

    CAS  Google Scholar 

  49. M. Santiago, E. R. Matarredona, L. Granero, J. Cano, and A. Machado, Brain Res., 2000, 858, 26.

    Article  CAS  PubMed  Google Scholar 

  50. A. H. Stokes, D. Y. Lewis, L. H. Lash, W. G. Jerome III, K. W. Grant, M. Aschner, and K. E. Vrana, Brain Res., 2000, 858, 1B.

    Article  CAS  PubMed  Google Scholar 

  51. M. A. Smith, G. Perry, P. L. Richey, L. M. Sayre, V. E. Anderson, M. F. Beal, and N. Kowall, Nature, 1996, 382, 120.

    Article  CAS  PubMed  Google Scholar 

  52. J. Busciglio and B. A. Yankner, Nature, 1995, 378, 776.

    Article  CAS  PubMed  Google Scholar 

  53. P. Soares-da-Silva, A. Parada, and P. Serrao, Brain Res., 2000, 863, 293.

    Article  CAS  PubMed  Google Scholar 

  54. A. Dagnino-Subiabre, B. K. Cassels, S. Baez, A. S. Johansson, B. Mannervik, and J. Segura-Aguilar, Biochem. Biophys. Res. Comm., 2000, 274, 32.

    Article  CAS  PubMed  Google Scholar 

  55. L. S. Jen, A. J. Hart, A. Jen, J. B. Relvas, S. M. Gentleman, L. J. Garey, and A. J. Patel, Nature, 1998, 392, 140.

    Article  CAS  PubMed  Google Scholar 

  56. W. Linert, R. F. Jameson, and E. Herlinger, Inorg. Chim. Acta, 1991, 187, 239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Bi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Bi, S., Liu, J. et al. Application of Dopamine as an Electroactive Ligand for the Determination of Aluminum in Biological Fluids. ANAL. SCI. 18, 293–299 (2002). https://doi.org/10.2116/analsci.18.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18.293

Navigation