Aerial release of Aedes aegypti male mosquitoes using an unmanned aerial vehicle: a novel control strategy

Autores/as

  • Kenia Mayela Valdez-Delgado Centro Regional de Investigación en Salud Publica, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Jana Celina Ríos-Delgado Centro Regional de Investigación en Salud Publica, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • José Asunción Nettel-Cruz Centro Regional de Investigación en Salud Publica, Instituto Nacional de Salud Pública. Tapachula, Chiapas, Mexico.
  • Roberto Angulo-Kladt Complex Dynamics. Ciudad Victoria, Tamaulipas, Mexico.
  • Cuauhtemoc Villarreal-Treviño Complex Dynamics. Ciudad Victoria, Tamaulipas, Mexico.

DOI:

https://doi.org/10.21149/14466

Palabras clave:

Aedes aegypti, unmanned aerial vehicles, sterile insect technique

Resumen

Objective. To development of a methodology for the chilling, handling, transport, and release of male Aedes aegypti mosquitoes, reared in insectary conditions to release in the field with unmanned vehicles to compete sexually with wild males in the field. Materials and methods. A population of Ae. aegypti from different areas in Tapachula, Chiapas, was used. Laboratory tests were conducted: Effect of temperature and cooling time on the knockdown, recovery of males, and copulatory success. Results. The chilling temperature of 3 ± 1ºC for 30 min, was used as a knockdown temperature before handling, packing, transportation, and aerial release. The males subjected to the entire process, including the semi-field aerial release test, showed normal sexual behavior activity, obtaining 100% of females inseminated. Conclusion. These results present the feasibility of applying a new control methodology using unmanned aerial vehicle (UAV) as support for the sterile insect release technique (SIT), use of Wolbachia or both, in male Ae. aegypti, for the design of strategies to control their populations.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ibañez-Bernal S, Gómez-Dantés H. Los vectores del dengue en México: una revisión crítica. Salud Publica Mex. 1995;37(supl):s53-63.

Kuri-Morales P, Correa-Morales F, González-Acosta C, Sánchez-Tejeda G, Dávalos-Becerril E, Fernanda Juárez-Franco, et al. First report of Stegomyia aegypti (= Aedes aegypti) in Mexico City, Mexico. Med Vet Entomol. 2017;31(2):240-2. https://doi.org/10.1111/mve.12225

Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001

Díaz-González EE, Kautz TF, Dorantes-Delgado A, Malo-García IR, Laguna-Aguilar M, Langsjoen RM, et al. First Report of Aedes aegypti transmission of chikungunya virus in the Americas. Am J Trop Med Hyg. 2015; 93(6):1325-9. https://doi.org/10.4269/ajtmh.15-0450

Garcia-Luna SM, Weger-Lucarelli J, Rückert C, Murrieta RA, Young MC, Byas AD, et al. Variation in competence for ZIKV transmission by Aedes aegypti and Aedes albopictus in México. PLoS Negl Trop Dis. 2018;12(7):e0006599. https://doi.org/10.1371/journal.pntd.0006599

Villegas-Trejo A, Che-Mendoza A, González-Fernández M, Guillermo-May G, González-Bejarano H, Dzul-Manzanilla F, et al. Control enfocado de Aedes aegypti en localidades de alto riesgo de transmisión de dengue en Morelos, México. Salud Publica Mex. 2011;53(2):141-51. https://doi.org/10.1590/s0036-36342011000200007

Ordoñez-González JG, Cisneros-Vázquez LA, Danis-Lozano R, Valdez-Delgado KM, Fernández-Salas I, Penilla-Navarro RP, et al. Nebulización térmica intradomiciliar de la mezcla de flupyradifurona y transflutrina en mosquitos Aedes aegypti susceptibles y resistentes a piretroides en el Sur de México. Salud Publica Mex. 2020;62(4):432-8. https://doi.org/10.21149/11142

López-Solís AD, Castillo-Vera A, Cisneros J, Solis-Santoyo F, Penilla-Navarro RP, Black IV WC, et al. Resistencia a Insecticidas en Aedes Aegypti y Aedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. Salud Publica Mex. 2020;62(4):439-46. https://doi.org/10.21149/10131

Janich AJ, Saavedra-Rodriguez K, Vera-Maloof FZ, Kading RC, Rodríguez AD, Penilla-Navarro P, et al. Permethrin resistance status and associated mechanisms in Aedes albopictus (Diptera: Culicidae) From Chiapas, Mexico. J Med Entomol. 2021;58(2):739-748. https://doi.org/10.1093/jme/tjaa197

Donald CL, Siriyasatien P, Kohl A. Toxorhynchites species: a review of current knowledge. Insects. 2020;11(11):747. https://doi.org/10.3390/insects11110747

Huang Y-JS, Higgs S, Vanlandingham DL. Biological control strategies for mosquito vectors of arboviruses. Insects. 2017;8(1):21. https://doi.org/10.3390/insects8010021

Scholte E-J, Knols BGJ, Samson RA, Takken W. Entomopathogenic fungi for mosquito control: A review. J Insect Sci. 2004; 4:19 https://doi.org/10.1093/jis/4.1.19

Liu WL, Yu HY, Chen YX, Chen BY, Leaw SN, Lin CH, et al. Lab-scale characterization and semifield trials of Wolbachia Strain wAlbB in a Taiwan Wolbachia introgressed Ae. aegypti strain. PLoS Negl Trop Dis. 2022;16(1):e0010084. https://doi.org/10.1371/journal.pntd.0010084

World Health Organization. Global vector control response 2017–2030. Geneva: World Health Organization, 2017.

Villarreal C, Arredondo-Jiménez JI, Rodriguez MH, Ulloa A. Colonization of Anopheles pseudopunctipennis from Mexico. J Am Mosq Control Assoc. 1998;14(4):369-72.

Danis-Lozano R, Correa-Morales F. Cría de mosquitos Culicidae y evaluación de insecticidas de uso en salud pública. Cuernavaca: Instituto Nacional de Salud Pública, 2021.

Kittayapong P, Ninphanomchai S, Limohpasmanee W, Chansang C, Chansang U, Mongkalangoon P. Combined sterile insect technique and incompatible insect technique: The first proof-of-concept to suppress Aedes aegypti vector populations in semi-rural settings in Thailand. PLoS Negl Trop Dis. 2019;13(10):e0007771. https://doi.org/10.1371/journal.pntd.0007771

Caragata EP, Dutra HL, Moreira LA. Inhibition of Zika virus by Wolbachia in Aedes aegypti. Microbcell. 2016;3(7):293-5. https://doi.org/10.15698/mic2016.07.513

Culbert NJ, Gilles JRL, Bouyer J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS One. 2019;14(8):e0221822. https://doi.org/10.1371/journal.pone.0221822

Diniz DFA, de Albuquerque CMR, Oliva LO, de Melo-Santos MAV, Ayres CFJ. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success. Parasit Vectors. 2017;10(1):310. https://doi.org/10.1186/s13071-017-2235-0

Villarreal-Treviño C, Ríos-Delgado JC, Penilla-Navarro R, Rodríguez AD, López JH, Nettel-Cruz J, et al. Composition and abundance of anopheline species according to habitats diversity in México. Salud Publica Mex. 2020;62(4):388-401. https://doi.org/10.21149/10111

Culbert NJ, Maiga H, Somda NSB, Gilles JRL, Bouyer J, Mamai W. Longevity of mass-reared, irradiated and packed male Anopheles arabiensis and Aedes aegypti under simulated environmental field conditions. Parasit Vectors. 2018;11(1):603. https://doi.org/10.1186/s13071-018-3191-z

Culbert NJ, Lees RS, Vreysen MJB, Darby AC, Gilles JRL. Optimised conditions for handling and transport of male Anopheles arabiensis: effects of low temperature, compaction, and ventilation on male quality. Entomol Exp Appl. 2017;164(3):1-8. https://doi.org/10.1111/eea.12610

Villarreal-Treviño C, Vásquez GM, López-Sifuentes VM, Escobedo-Vargas K, Huayanay-Repetto A, Linton YM, et al. Establishment of a free-mating, long-standing and highly productive laboratory colony of Anopheles darlingi from the Peruvian Amazon. Malar J. 2015;14:227. https://doi.org/10.1186/s12936-015-0733-0

King AM, MacRae TH. Insect heat shock proteins during stress and diapause. Annu Rev Entomol. 2015;60:59-75. https://doi.org/10.1146/annurev-ento-011613-162107

Zerebecki RA, Sorte CJ. Temperature tolerance and stress proteins as mechanisms of invasive species success. PLoS One. 2011;6(4):e14806. https://doi.org/10.1371/journal.pone.0014806

Descargas

Publicado

2023-07-15

Cómo citar

1.
Valdez-Delgado KM, Ríos-Delgado JC, Nettel-Cruz JA, Angulo-Kladt R, Villarreal-Treviño C. Aerial release of Aedes aegypti male mosquitoes using an unmanned aerial vehicle: a novel control strategy. Salud Publica Mex [Internet]. 15 de julio de 2023 [citado 27 de abril de 2024];65(4, jul-ago):387-93. Disponible en: https://www.saludpublica.mx/index.php/spm/article/view/14466

Número

Sección

Artículo original

Artículos más leídos del mismo autor/a