Facile Synthesis of MoS₂ Modified TiO₂ Nanospheres with Enhanced Photoelectrocatalytic activity

Bin Dong^{1,2,*}, Yan-Ru Liu¹, Guan-Qun Han^{1,2}, Wen-Hui Hu¹, Yong-Ming Chai¹, Yun-Qi Liu^{1,*}, Chen-Guang Liu^{1,*}

¹ State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, PR China
² College of Science, China University of Petroleum (East China), Qingdao 266580, PR China
*E-mail: dongbin@upc.edu.cn, liuyq@upc.edu.cn, cgliu@upc.edu.cn

doi: 10.20964/110403039

Received: 3 September 2015 / Accepted: 3 February 2016 / Published: 1 March 2016

 MoS_2/TiO_2 nanocomposites composed of MoS_2 nanosheets and TiO_2 nanospheres have been successfully prepared by a facile hydrothermal process. The as-prepared MoS_2/TiO_2 samples with different MoS_2 content have been characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show TiO_2 nanospheres with uniform size can improve the dispersion and decrease the aggregation of MoS_2 nanosheets. The best morphology and size of MoS_2/TiO_2 nanocomposites can be obtained when the content of MoS_2 is 70 wt% (M-7). UV-vis data show that MoS_2/TiO_2 samples have better absorption in visible light region compared to pure MoS_2 and TiO_2 . The photoelectrocatalytic activity of MoS_2/TiO_2 samples has been evaluated by the photocurrent measurement. The results show that MoS_2/TiO_2 nanocomposites with MoS_2 content of 70 wt% (M-7) have the highest photocurrent which implies best photoelectrocatalytic activity of M-7. The reason may be that the suitable content of MoS_2 and the tight junction between MoS_2 and TiO_2 nanosphers is helpful for preventing the recombination of photogenerated electrons and holes.

Keywords: TiO₂ nanospheres; MoS₂; photoelectrocatalytic activity; nanocomposites

FULL TEXT

© 2016 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).