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Alexander Dmitrievich Bruno

Complicated and exotic expansions of solutions to the Painlevé equations.

We consider the complicated and exotic asymptotic expansions of solutions to
a polynomial ordinary differential equation (ODE). They are such series on integral
powers of the independent variable, which coefficients are the Laurent series on
decreasing powers either of the logarithm of the independent variable or on its pure
imaginary power correspondingly. We propose an algorithm for writing ODEs for
these coefficients. The first coefficient is a solution of a truncated equation. For
some 1nitial equations, it is a polynomial. Question: will the following coefficients be
polynomials? Here the question is considered for the third (P3), fifth (P5) and sixth
(Fs) Painlevé equations. We have found that second coefficients in seven of eight
families of complicated expansions are polynomials, as well in two of four families of
exotic expansions, but in other three families, polynomiality of the second coefficient
demands some conditions. We give detailed proofs and calculations of these results.

Key words: expansions of solutions to ODE, complicated expansions, exotic
expansions, polynomiality of coefficients, Painlevé equations.

Agnexcanap Amurpuesuu bprono

CnoXxHbIE ¥ DK30TUUYECKHUE Pa3I0KeHUs perieHui ypasHeHui [lennese. [pe-
npuHT MHCTUTYTa NpukiagHoit marematuku uMm. M.B. Kenneiira PAH, Mocksa, 2018.

PaccmarpuBaroTcs ClOKHBIE U SK30THYECKHE ACUMIITOTHYECKUE PA3JIOKEHUS pe-
IIEHUH TOJTMHOMHAILHOTO OOBIKHOBEHHOTO quddepenunanbioro ypasaenus (O4Y).
DTO Takue psAJbl MO LEIbIM CTEINECHSIM HE3aBUCUMOM IEpEMEHHOM, KO3 (OUITUEHTHI
KOTOPBIX CYTh psiibl Jlopana 1160 oT sorapudma 3Toil mepeMeHHOM Uil OT MHUMOU
CTeneHu coOTBeTCTBEHHO. [Ipennaraercs anroputm coctabnenus OY mis atux ko3d-
¢duruenToB. [1epBoiii KOYPPUITUEHT SBIIETCS PEIICHUEM YKOPOUSHHOTO YPAaBHEHUS.
J171s1 HEKOTOPBIX UCXOAHBIX YPABHEHHM OH ABJISIETCS MHOrowieHoM. CripanmBaercsi:
OyAyT JIu MHOTOWJIEHAMU clieAytomue ko3 GUuuueHTs? 31ech 3TOT BONPOC U3ydaeTcs
IUISl TPETBETO, MATOrO U mecToro ypasHeHuil [lenneBe. Oka3anock, 4TO B CEMH U3
BOCBMH CEMEUCTB CII0KHBIX PA3JIOKEHUHU U B JIBYX U3 YETBIPEX CEMENCTB IK30THYE-
CKUX Pa3JIOKEHUN BTOpbIe K0P PUIIMEHTH — MHOTOWIeHbl. Ho B TpEX ocTaBmIMXCs
ceMeNCcTBax BTOPbIE KOIPPUIMEHTHI SIBISIFOTCS MHOTOYJIEHAMH TOJIBKO IIPU OIpeie-
JEHHBIX YCIOBUAX. 3/1€Ch MOAPOOHO U3NI0KEHBI JOKA3aTeIbCTBA U BEIYUCICHHS ITUX
pE3yJIBTaTOB.

Knroueswoie cnoea: paznoxenus pemeHui OI1Y, cioxHbIe pa3noKeHus, IK30TH-
YEeCKUE Pa3IokKeHUs, MTOJIMHOMUATBHOCTh KOA(h(ULIMEeHTOB, ypaBHeHus [1ennese.
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1. Introduction

In 2004 I proposed a method for calculation of asymptotic expansions of solutions
to a polynomial ordinary differential equation (ODE) [1]. It allowed to compute power
expansions and power-logarithmic expansions (or Dulac series) of solutions, where
coefficients of powers of the independent variable x are either constants or polynomials
of logarithm of z. I will remind the method lately. Later it is appeared that such
equations have solutions with other expansions: they can have coefficients of powers of
x as Laurent series either in increasing powers of log x or in increasing and decreasing
imaginary powers of x. They are correspondingly complicated (psi-series) [2] or
exotic [3]] expansions. Methods from [|1]] are not suitable for their calculation. Now
I have found a method to writing down ODE for each coefficient of such series
(Section [2). The equations are linear and contain high and low variations from some
parts of the initial equation. The first coefficient is a solution of the truncated equation,
and usually it is a Laurent series in log z or in 2. But it is a polynomial or a Laurent
polynomial for some equations.

Question: Will be the following coefficients of the same structure?

I consider this question for three Painlevé equations P3, P; and P, because
among 6 Painlevé equations P,—F; there are 3 equations Ps, Ps, P having complicated
and exotic expansions of solutions ( [4-6]). First coefficients for equations P3, P5; and
P; are polynomials in log  in complicated expansions and Laurent polynomials in 2*?
in exotic expansions [4,60]. Each of the Painlevé equations P;, P5 and F;; has 4 complex
parameters a,b,c,d. Two of them are included into the truncated equation. These three
Painlevé equations have 8 families of complicated expansions and 4 families of
exotic expansions. I have calculated several first polynomial coefficients for all these
12 families, sometimes under some simplifications. Second coefficients in 7 of 8
families of complicated expansions are polynomials, as well in 2 families of exotic
expansions, but one family of complicated and two families of exotic expansions
demand some conditions for polynomiality of the second coefficient. The third
coefficient is a polynomial ether always, either under some additional restrictions on
parameters, or never. Results for equation P, Ps, P are given in Section 3] 4] and
[6] correspondingly.

2. Writing ODEs for coefficients
2.1. Algebraic case. Let we have the polynomial

f(zy) (1)

and the series

y=>Y wra*, 2)
k=0
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where coefficients ¢y, are functions of some quantities. Let we put the series (2)) into
the polynomial (1) and will select all addends with fixed power exponent of x. For
m

that, we break up the polynomial (T]) into the sum f(x,y) = Z fi(y) 2*, and we write
the series (2)) in the form y = o+ > ¢y, 2" gpo +A. Then AV = Z ¢ x*, where
k=1 k=j

coefficients c;;, are definite sums of products of j coefficients ¢; and corresponding
multinomial coefficients [[7]. At last, each item f;(¢o + A) can be expanded into the

Taylor series
1 df;

Y=%o

So the result of the substitution of series (2)) into the polynomial (I]) can be
written as the sum

> |t + 3 5 T St
i=0 j=1 Y k=j
of items of the form djf (20)
i\%0 ko
]' d—yJ Cji X (3)

Here integral indexes ¢,7,k > 0 are such
k>j; if =0, then k=0. 4)

Set of such points (i,5,k) € Z? will be denoted as M. At last, all items () with
fixed power exponent 2" are selected by the equation ¢ + k£ = n. The set M can be
considered as a part of the integer lattice Z* in R? with points (4,5,k), which satisfy
@.

If we look for expansion (2)) as a solution of the equation f(z,y) = 0 and want to
use the method of indeterminate coefficients, then we obtain the equation f(yg) = 0
for the coefficient ¢, and equation

dfo (o) o Z i1 & fi(vo) cir " + 2" fu(o) =0, )

dy o J' dy’
(i.5.k
for the coefficient ¢, with n > 0, where N(n) =M N{j > 0,71+ k =nand j >
1, if 4 = 0}. That equation can be canceled by ™ and be written in the form

dfo(¢o) . 1 & fi(#o)

dy ©n ]' dyj Cik + fn((PO) =0. (6)

(i,,k)EN(n)
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Theorem 1 ([8]). If dfy(vo)/dy # 0, then coefficients p,, can be found from equations
(6) successfully with increasing n.

2.2. Case of ODE. If f(x,y) is a differential polynomial, i.e. it contains derivatives
. .. : o
d'y/dz!, then the job of derivatives d—J; play variations —f., which are derivatives

| 0y’
.. of af . :
of Frechet or Gateaux. Here the j-variation T if the polynomial does
Y Y

: . _y C . d" d*
not contain derivatives, and variation of a derivation is — —z = - and for
oy \ dx dx

products

dxktl

o) _ oy 0F 0 (dy d ) _
Sy dy oy 7 Sy \dzF da!

Analogue of the Taylor formula is correct for variations

fo+ )=y 5 W

J=0

Let now we have the differential polynomial f(z,y) and we look for solution of
the equation f(z,y) = 0 in the form of expansion (2). Here the technique, described
above for algebraic equation, can be used, but with the following refinements.

1) According to [1]], differential polynomial f(z,y) is a sum of differential
monomials a(z,y), which are products of a usual monomial const - z"y* and sev-
eral derivatives d'y/dx'. Each monomial a(x,y) corresponds to its vectorial power
exponent Q(a) = (q1,q2) under the following rules: ((const) = 0, Q(z"y*) =
(r,8), Q(d'y/dx') = (—I,1), vectorial power exponent of a product of differential
monomials is a vectorial sum of their vectorial power exponents Q) (ab) = Q(a)+Q(b).
Set S(f) of all vectorial power exponents ()(a) of all differential monomials a(x,y)
containing in f(z,y) is called as support of f. Its convex hull I'( f) is a Newton poly-

gon of f. Its boundary OI" consists of vertices FE-O) and edges FE-D
(d)

. To each boundary

; corresponds the truncated equation fj(d) = 0, where f;d) is a sum of all
monomials with power exponents () € Féd). The first term of solution’s expansion to
the full equation is a solution to the corresponding truncated equation. Now the part
fi(z,y) contains all such differential monomials a(x,y), for which in Q(a) the first
coordinate ¢; = i. Besides, we assume that f(z,y) has no monomials with ¢; < 0,
and fo(y) # 0. Then all formula of the algebraic case with variations instead of

derivations are correct.

element [’
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2) Variations are operators, which are not commute with differential polynomials.
So the formulae (3] takes the form

of LS n
=2a"ont Y i e+ a"f =0, (7)
y (4,5,k)EN(n J- 0y

but n i‘p we cannot cancel by z" and obtain an analog of formulae (6). In (7)) all
87 f; /8y’ are taken for y = .

Theorem 2 ( [8]). In the expansion (2)) coefficient p,, satisfies equation (7).

3) Rules of commutation of variations with functions of different classes exist.
If oy, is a series in log z, then £ = logz and z° = €%,

Lemma 1 ( [4]).

where <Z> are binomial coefficients and p"*) is the k-th derivation of p(&) along €.

Proof follows from the Leibniz’s formula for derivation of a product.

Corollary 1.
d

dg
d2

) [2°p(€)] = 2°[s%p(€) + 25¢(€) + @(€)] .

[2°p(E)] = 2*[sp() + H(E)],

If ¢y, is a series in /7, then € = 27 and 2* = £%/(7),
Lemma 2 ( [9]).

jgn /()] =

n—1
_ ¢s/@) s _ S _ Wy L L m)
_ gollin L <> ( 1)...(2,7 n-l—k:—l—l)go O gzt e

Corollary 2.

o



i

2 2

@l = |2 (2 1) o+ Zepr ]

These Lemmas give rules of commutation of an operator with z°. Applying
them in equation (7)), we can cancel the equation by " and obtain an equation without
x, only with £. So the algorithm consists of the following steps.

Step 0 From the initial equation f(z,y) = 0, we select such truncated equation
fl(l) (x,y) = 0, which corresponds to edge Fgl) of the polygon I' of the differential
sum f(z,y) and has a complicated or exotic solution depending from log x or
2", v € R correspondingly.

Step 1 We make a power transformation of the variables y = 2’z to make the trun-
cated equation correspond to the vertical edge.

Step 2 We divide the transformed equation g(x,z) = 0 into parts g;(z,y)xz’, corre-
sponding to different verticals of its support.

Step 3 In these parts g;(z,y)x’ we change the independent variable x by log = or by
x'.

Step 4 We write down equations for several first coefficients .

Step 5 Using the rules of commutation, we exclude powers of = from these equations
and we obtain linear ODEs for coefficients with independent variable log x
or 27, Their solutions are power expansions and can be computed by known
methods from []1]].

3. The third Painlevé equation P;

3.1. Truncated equation and its logarithmic solutions. The third Painlevé equa-
tion Pj 1s , )
! " ayt+b d
y//:y__2+ Y v+ 2,
y z x (Y

Let multiply it by its denominator zy and translate the left hand side into right side.
Then we obtain the equation Ps, written as a differential polynomial

d
f(x,y) lef —zyy” + 2y — gy + ay® + by + cxy* + dr =0, (8)

where a, b, ¢, d are complex parameters. Its support and polygon for a,b,c,d # 0 are

shown in Fig. |1} The edge Fgl) corresponds to the truncated equation

FVE gy + 2y — gy + by + dr = 0. ©)

After the power transformation y = xz and canceling by z, the full equation (&)
became

g C 202" 222 — 122 4 ba+ d + ax’s® + catt = 0. (10)
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Figure 2. Support and polygon of the equation for a,b,c,d # 0.
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Here the truncated equation (9)) takes the form

9 def — a2 4+ 2?? — a2 bz +d=0. (11)

Support and polygon of equation are shown in Fig.|2| Here the truncated equation

(TT]) corresponds to the vertical edge Fgl) at the axis ¢; = 0. Here ¢» = a2?, g4 = c2*.

After the logarithmic transformation ¢ = log , equation takes the form

ho™ —2i4 224 b2vd=0, (12)

where Z = dz/d§. Support and polygon of equation (12]) are shown in Fig. 3|in the
case bd # 0. Here hy = a2?, hy = cz*.
(1) def

Let b # 0. The edge fﬁ” of Fig. corresponds the truncated equation le =
—22+422+bz = 0. It has the power solution z = —b&? /2. According to [1]], extending



q2 A
2 —

1
e

i

| | >
| | ot
—2 -1 0

Figure 3. Support and polygon of the equation with bd # 0.

it as expansion in decreasing powers of £, we obtain the solutions of equation ([11))

b ~ d
—§(logx + 0)2 — 5 = ©o, (13)

z =

where ¢ is arbitrary constant.
Let us consider equation in the case b = 0, d # 0. Then equation has
the form
ho™ —zz 4+ 22 +d=0.

)

Its polygon coincides with the edge fgl in Fig. |3l The equation has solutions

z=xvV—d(logx + ¢) = ¢y. (14)
Thus, we have proved

Theorem 3. All nonconstant solutions to equation (12)), expanded into power series
in decreasing powers of &, form two families:

the main family (13)) for b # 0, and
the additional family (14) for b = 0,d # 0.

Solutions to equation have the form of expansion
2= 00(&) + ) (&)™, (15)
k=1

where o is given by or (T4).
In the first case b # 0, we call family of solutions as main, and in the
second case b = 0, d # 0, we call the family of solutions as additional.
According to Theorem |2} equation for (o is

dhy

5, (Tp2) + @7 ha(i20) = 0. (16)
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According to ((12))

(5h0 , d? d 52hg
— — + 22 b, — =0.
5, = —Z — Zd§2 + 2z— i + 52 0 (17)

According to hy = az® and according to Corollary 1

d . d?
d_gx o = 1”205 + o], dex o = o [Apy + 4y + $o] .

So, equation (T6)), after canceling 22, takes the form

— 2[4y + 4o + @] + 22 209 + Po] + (b — )02 + az® = 0, (18)
where z = ¢ from (13)) or (14).

3.2. The additional complicated family. Let{ = logx + ¢, then, according to (14),
2z =y = B¢, B2 = —d, 2 = B, = 0, and equation (T8)) is

—BE[Ap2 + 42 + $a] + 28202 + o] + a(BE)* =
Its support and polygon see in Fig. 4]

Q2ﬁ
S

| 0 | q1
—1 1 3

Figure 4. Support and polygon of equation for ¢5 in additional complicated expansion.

Cotangent of the angle of inclination of its right edge equals to —2. So we look
for polynomial solution of degree 2. Indeed that equation has a polynomial solution:

_ad 1

Here a linear system of 4 algebraic equation is satisfied for 3 constant coefficients.
According to Theorem [2] equation for ¢, is

oh 5 0hs
520xg0 + 22 5—:0 <p2+:c h4(g00) 0. (19)
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According to Corollary 1

d? 4 4 . ; d 4 4 .
gt = [16p4 4 84 + $4] PRI [4p4 + 4] -
oh dh
Here —= = —=2 = 3az2, hy = cz™.
0z dz

So after canceling by z*, equation takes the form
—BE[16¢4 + 824 + Pu] + 284y + ¢4] + 3057702 + ¢(BE)* = 0. (20)

Its support and polygon are shown in Fig.

A
S

—1 1 4

q1

Figure 5. Support and polygon of the equation (20).

Cotangent of the angle of inclination of its right edge equals to —3. So the
solution to equation may be polynomial of order 3

o1 =AL +BE+CE+ D
Then the sum of two first addends in is
—16BAE* +(—16B—16A) B3+ (—16C —8B)3E? 4 (=16 D+2B) 3¢ +2(4D+C) 3.

Here coefficients near £2, &' and €° = 1 for BB, BC, BD form the matrix

-8 —16 O
2 0 -16
0 2 8

with zero determinant. From the other side, the sum of two last addends in (20)) is

i _ 3a’d?

3a8°ps + c(B)! = = <£4—£3+%§2>+cﬁ4€4-
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: 3 :
Coefficients of that sum near £2, £! and 1 are §a2d2, 0 and 0 correspondingly. Hence,

. . . 9
the linear system of equations for A, B, C, D has a solution only if —a’d* = 0. As
d # 0, then we obtain the condition a = 0 for existence A, B, C, D. Under the

condition ; . .
=T (e-e+36-3) e

Asa = 0, then g = gy + 2*q4, 2 = 0, and the expansion of solution contains powers
of x, which are multiple to 4.
Theorem |2 gives for g the equation

oh 10Ny
0 S + 2t atoy = 0. (22)
0z 0z
oh d? d oh d
According to (17)), here 5—; = _Zd_§2 + z d_ﬁ’ 5—24 = % = 4¢z3. According to
Corollary 1
d2
dgza: s = 28[64¢p5 + 16¢5 + P , dfx s = 28[8ps + ¢¥s] .

As hy4 does not contain derivatives, then variation

Shy  dhy
— = 7 = de(Be)’

and it commutes with z*¢,. Canceling equation (22)) by x*, we obtain equation

—BE [64ws + 165 + @] + 28 [8ps + ¢g] + 4cB33ps = 0.

It has the polynomial solution

A3 (s 59 5 59 59 59
_cr _oggh 293 972 _ .
s (é g+ 26—+ )

162 464 3264
According to Theorem 2| we obtain the equation for ¢19

dhg 40hy 2 10%hy 2
59512%012-1—1’ 5—x890 +at 2 52 (zhps)” =0.

According to Corollary 1, it has the form

— BE[144p12+24019+ Gra] +28[12012+ P12] +4c(BE)? S08+2 6c(8E)%p; = 0. (23)
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If to look for solution of the equation as the polynomial of order 7
10 =B+ FEO 4+ GO+ HE+ 18+ JE+ KE+ L,
then the sum of terms of small powers of £ in the first two addends in 1s
B(—144K — 24J)€* + B(—144L + 2J)¢ + B(24L + 2K).
Matrix of coefficient near 5.J, SK and 5L is

—24 —144 0
2 0 —144
0 2 24

It has zero determinant. From other side, terms of smallest power of £ in the remaining

part of equation are
653 2 1 2

according to (21]). The linear algebraic system of equations for £, ..., L has a solution,
if the coefticient in equals to zero. As 8 # 0, then ¢ = 0. In that case the full equa-
tion is degenerated into truncated one gy = 0, and in expansion z = >_ ¢ (£) x4 all

k=0
w4 = 0 for £ > 0. That is the trivially degenerated integrable case with a = ¢ = 0.

So we have proved

Theorem 4. In expansion of the additional complicated family of solutions to
the equation Ps, polynomial coefficients are - for any values of parameters a and
c, also 4, pg = 0, g are polynomials for a = 0. The fifth coefficient pg never is a
polynomial, if |a| + |c| # 0.

3.3. The main complicated family. Let put £ = logx + ¢, then solution is:

d
2% = @o(§) -

Here 2 = —b, 2 = —b and the equation has the polynomial solution

b2
o= o8-

2
0y = % (€8 =28+ (24208 — (1 +20)E+ N |

where \ = d/V?.
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Theorem 5. In expansion of the main complicated family of solutions to the
equation Ps, the second coefficient o is always a polynomial.

Farther we consider the main family under the restriction d = 0. Then \ =
b
0,z = —552, 3= —b¢, 3 = —band

ab2
(

pr = — (1 =26 + 262 - ¢€).

According to Theorem [2], equation for ¢ is

52 rhpy + o 5—33 200 + 2thy = 0.
According to (17 and Corollary 1,
oh
(5;:6 o4 = z* 5 (1604 + 84 + 4] — 220 [4ps + @a] + 2 - 2bipy
dha 2Z’)ab2 4 C . oo
2= = — hy = —(b&7)" .
2y = 2, hy= 1 (06

After canceling by z*, we obtain the equation

b Cb4
3 E2 [16¢4 + 864 + Fa] — 2b€ [4py + 4] + 2bpy + ab2§ o + —58 =0.

It has the polynomial solution

P4 = @253% + cb3¢2 )

where
1 6 15 91 , 115 5 115 115
i = 29(35 S-S+ e - 5)
1 649 19 15 4 15 5, 15
¢2=§<—f +28 — f 53¢ s t5Ed)
According to Theorem [2 we have following equations for ¢ and g
dho ¢ 20N 21 %Ry 2, 40ha o
5, e +$5—$90 it 2t 5 552 (2%p2) +$gﬂ7%@2—0,
5h0 3 5h2 1 6%hy -, 4 4 2O0hy 4

62hy

1 2 N2 _
+t355.0 (x gog) =0.
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The equations have polynomial solutions for any parameters b # 0, a, ¢, because their
parts, containing variations from h, and hy, do not contain £2,€ and £° = 1.

Hypothesis 1 ( [8]). Coefficients @ (&) in expansion of the main complicated
family of solutions to the equation Ps are polynomials in log x, if the parameter of the
equation d = (.

3.4. Exotic expansions for equation /3. Now and to the end of the Section, we put
E=2"v€ R,y #0. Then

e e/Gy) T VEC A A

x x?
So the truncated equation takes the form
V(€25 4 €2) — 22 + bz 4+ d = 0.
Dividing it by +2, we obtain equation
ho ™ 2(€25 4+ €2) — 22 4 br+d =0, (25)

where b = b/~2,d = d/~2. In the full (nontruncated) equation hy = a2°, hy = éz%,

where @ = a/y?,¢ = ¢/~
Theorem 6. All exotic solutions to equation in the form of Laurent series
r=AE+BHCE
where A, B, C = const € C are the Laurent polynomials
2=A' + B+ O =gy, (26)
and form one family, where
B+b=0, 4AC-V+d=0. (27)

Proof is based on [1]]. Polygon I' of the truncated equation (25)) is the edge
g1 = 0,0 < g < 2. Its upper vertex q; = 0,qy = 2 corresponds to the truncated
equation

ho ™ (€25 4 ¢2) — 22 = 0. (28)

Its characteristic equation is

k(k—1)+k—-k*=0.
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So equation (28) has power solutions z = A&* with any constants A and A. In
particular, z = A£ is its solution. We make substitution 2 = A 4w into equation (25)).
Then it takes the form

xﬁ(fﬂ+u—§a+®%ﬂd§ﬁ+&0—§%g+&w+d:0. 29)

Support and the polygon of equation are shown in Fig. [6]

q2
2
1—.—
~(1
r
T ? >
0 1

Figure 6. Support and polygon of equation (29)).

)

It 1s a quadrangle with the edge 'Y with normal P = 1,0), corresponding to
1 g

the truncated equation .

AE(E¥i+u—Eu+b)=0.
Its power solution v = c£? withr = 0 is u = —b. After substitution u = —b + w, the
equation takes the form

AE(E4D — €+ w) 4 (w — D) (€% + €) — E2® =P +bw+d=0.  (30)

Its support and polygon I" are shown in Fig. . Polygon I" has the edge fgl) with the
normal P = (1, — 1), corresponding to the truncated equation

A0 — v +w)— b2 +d=0.

Constant C of its solution w = C¢(~Y satisfies equation 4AC — b* +d = 0. It is also
a solution of equations w (&% + &) — £%? = 0 and b(w — £2 — &) = 0. So that
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Figure 7. Support and polygon of equation (30]).

solution w = C¢=Y is a solution of the equation (30). Hence, (26)), are solutions
to equation (25).

Remark 1. Equation is integrable and Theorem [6| follows from Theo-
rem [I][9], which describes all solutions of equation (23).

Exotic expansion of solutions to the full equation (10)) again have the form (|15)).
Let us find p5(&). It is a solution to equation (16]). But now according to (23),

Sh &

5 = d§2+25—€—2z£ —£+£z+b—25 gz T (F 208 €+€Z+b (1)
8hg , d? & hy _ -3
T o0 e

According to 2 = AE — Ce7L, €23 = 20¢7 L. So, applying Corollary 2 to
equation and dividing it by 22, we obtain equation

(A + B+ C¢ [3 (E — 1) Y2 + iﬁ% + 52852] +
1y \ 1y 1y
#(-Ag+ 54306 [ 2t gl +
+(AE—B+CE Y +a(AE+ B+ CE)P =0. (32)

Its support and the polygon are shown in Fig.
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q2
1
° ° 5 + ° -
-3 1 3

Figure 8. Support and polygon of equation (32)).

Cotangents of angles of inclination of left and right edges are equal to +2. Hence,
solution to equation in form of a Laurent polynomial must have powers from —2
to +2, 1.€.

o =D&+ EE+ F+ G+ HE?, (33)

where D,E F,GG,H — are constants. Then
{po =2DE + BE — GE = 2HE?,
%Gy = 2DE> + 2GE + 6HE2.
Note that
3 = (AE + B+ C&71)3 = A3¢3 + 3A2BE? + 3(AB? + A20)¢ + B3 + 6ABC+
+3(AC? + B2C)¢ 1+ 3BC?¢2 4 C3¢ 3.

We substitute these expressions into equation (32)) and nullity coefficients near £3,£2,
£,£0.671.672 €73, Then we obtain a system of 7 linear algebraic equations for 5
coefficients D, F, F',GG,H. It has the unique solution

5 A2n2 5 ABA2 5 B2~2 8 & 672)~2
0 g DY p BB aacBEOY g
(24 1v) 2 + iy 4+~ (4 +9?)
5 BOA2 ~ 12,2
ol C’j = a07 |
2 —iy (2 —iv)?
According to Theorem 2| we have for ¢, the equation
ohy 4 16%ho, 5 9 50ha 4
20 i — h =0 35
5, L Pt gy (87p2)” a7y o+ 27 ha(e) = 0, (35)

Let us consider it in the case « = 0. Then according to (33)), 02 = 0 and

equation is
oh
't a'hy =0, (36)
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oh
where 5—20 isin (B1)), hy = ¢z, 2 = pg = AE + B + C¢L. Using in equation (36)

Corollary 2 and dividing it by z*, we obtain equation
4 (4 8 . .
(Af + B+ 05_1) |:— <— — 1) o4+ —Eps+ §2S04] +
1y \ 1y 1y
4
+ (—AE+ B+ 3067 bm + 5@4] +
+ (A6 =B+ Ce Nou+ A+ B+CEN =0, (37)

Its support and the Newton polygon are shown in Fig. 9.

\
3
3

—
-4
3
3

“q

1

T
4 1 4
Figure 9. Support and polygon of equation (37)).

Inclinations of its side edges are +3. Hence, solution to equation in the
form of Laurent polynomial must have powers of ¢ from —3 up to +3.

o1 =18+ JE+ KE+ L+ ME + N2 40673 (38)
Then
Epy =313 +2J62 + K& — MET —2NE2 — 30673,
€2, = 6163 + 2JE2 + 2MEL + 6NE2 + 120673
Besides,

(A& + B+ Ceh)t = AM! 4 443BE® + (6A2B* + 4A°C)E%+
+ (4AB® + 12A°BC)¢ + B* + 6A°C* + 12AB*C + (4B°C + 12ABC*){ '+
+ (6B%C? + 4ACHE2 +4BC3¢ 3 4 ¢t

Substituting these expressions in equation (37) and nullifying coefficients near £4,£3,¢2 £, €0 €71 ¢
we obtain a system of 9 algebraic equations for 7 coefficients I,/ K,L,M,N,O. The
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system has solution

A _ 2¢A’By*(3 4 1)
4249 T 24 i)+ iy)?
 CAB*y*(12 4 5iy)  ¢A*C*(3 + 2iy)
C8(2+ i) (4 + i) 402 41iy)2

éB%*y?  2GABC(48 4 54?)
L= : (39)
16 + 2 (16 + +2)?

_ EB*Cv*(12 = biry) | ¢AC?y*(3 — 2i)
82 —in)(4—iv) 42—iy)?
2¢BC?*y%(3 — i) c03~?

N - E . ) O — s . 9 -
(2 —iy)(4 —1iv)? 42 = iy)?

Thus, we have proven

Theorem 7. In the exotic expansions of solutions to equation Ps, the second
coefficient py(&) is always the Laurent polynomial (33), (34), but the third coefficient

@4 is a Laurent polynomial (38), (39), if the parameter a = 0.
The case a # 0, ¢ = 0 should be studied separately, using equation (35]).

4. The fifth Painlevé equation F; in Case I

4.1. Two cases for equation P5. The fifth Painlevé equation P is

1 1 ! —1)? b dy(y + 1
oL L)y Y W By e D) oy,
2y  y—1 x x? Y x y—1

where a,b,c,d are complex parameters, x and y are independent and dependent vari-
ables, v’ = dy/dx [5]. To write equation (40)) as a differential sum, multiply it by
2%y(y — 1) and carry all terms into right side. We obtain the equation

—2y(y — 1)y" +2°(By — 1)y'?/2 — ay(y — )2’ + (y — 1)°(ay® + b)—
— cacyQ(y —1)+ d:1:2y2(y + 1)2 =0. (41

Its support and polygon are shown in Fig.
After substitution y = 1 + z into equation (#1]), we obtain equation

3
— 2?2 (2 + 1) + 222? <§z + 1) — 222 (2 4+ 1) +az(z 4+ 1) + b2+
texz(z+ 1) +da*(z+1)*2+2)=0. (42)

Its support and polygon are shown in Fig. [T1]
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Figure 10. Support and polygon of equation (4 1).

Figure 11. Support and polygon of equation (42).

We will differ two cases with different truncated equations:
Case I. Truncated equation corresponds to the low inclined edge F§1) in Fig. .
It is
—2(2"2* 4+ ) + 2%2)* + cvz +2d = 0

and is similar to the truncated equation (9)) of equation Ps.
Case II. Truncated equation corresponds to the left vertical edge Fgl) in Fig. .
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4.2. Preliminary transformations in Case I. To transform the edge Fgl) in vertical

one, we make the power transformation z = zv. Then 2/ = v + xv/, 2" = 20" + 20"
and equation (42)) divided by 22 takes the form

e 3 1
g(z,v) (. v (1 + zv) + z%v'? (1 + §:cv> — xv'v + éajv3+

+ a(xv® + 2220t + 2%0°) + bav® + (v + 200* + %)+ (43)
+d(2 + 5av + 4?0 + 2%0°) = 0.
Its support and polygon are shown in Fig.
QA
5__
3+ °
1¢
o 1 sa&
Figure 12. Support and polygon of equation (43)).
If according to Section 2 to write
g(z,v) = go(,0) + 2g1(2,0) + 22 ga(w,0) + 2°g3(x,0)
then
go(z,0) = =220 + 2%0'? — 2v'v + cv + 2d,
3
gi(zw) = —2?v?" + §x2vv’2 + (% +a-+ b) v3 + 2¢cv? + 5dv (44)

go(x,w) = 2avt + cv® + 4dv? g3(x,w) = av® + dv? .
Complicated and exotic expansions of solutions to equation have the form

v =o(&) + zp1(&) + T2 () + - -, (45)
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where £ = log x + ¢y, ¢y is arbitrary constant. According to Theorem 2, equation for
the second coefficient ¢ is

J
2 (wp1) +2g1(20) = 0. (46)

4.3. Complicated expansions. In g;(z,v) from (44), we change the independent
variable z by £ = log x + ¢y, where ¢y is arbitrary constant. We obtain
go (&) =go(z,v) = —vi + 0° + cv + 2d,
gi(€0) =gi(z0) = —v* (5 — 0) + %vfi)z + wvd + 2cv® + 5dv | (47)
g5 (Ew) =go(2,0) = 200" + cv® +4dv?,  gi(Ew) = g3(z,0) = av® + dv?,

1
Wherew:§+a+b.

According to Theorem 3, solutions v = (&) to equation gy(&,v) = 0, which
are the Laurent series in decreasing powers of £, form two families:
additional: oy = v = B¢ forc =0, 52 = —2d, d # 0, and
main: @y = v = —252 — — for ¢ # 0.
c
According to (47)

095 d? . d .
= —Vv—= + 20— — .
50 Udf’? + Udé“ +c—wv
According to Corollary 1
d . d? . .
d—f(wﬁ = zfp1 + @1, d—gg(wl) = zfp1 + 201 + ¢1] -
First we consider the additional family. Then
095 d? d 3¢3 342 3 3
— —B6— + 28— — b
G = Plgm W o=+ P+ (58 +ad8 ) ¢

and equation (46)) after dividing by z and using 2d = — 3? takes the form

—Beler + 201 + 1] + 2Blp1 + 1] + wBE + 77 — B =0.
It has the polynomial solution

01 = —2wd(£* — 26 +2) — 2dE + 2d . (48)
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Now we consider the main family. Then

095 .o d\ d d
_ (L)L el 1o
50 (2g +c> g g e

3
9] = wv — v + cv® + 562521) + 2cv? 4 5dv = wv® — c€v? + 2dv .
Equation after division by = is

d
<§§2 + E) (1 + 201 + ¢1] — 2¢€[p1 + 1] + 2c01 + wvd — c€v® 4+ 2dv = 0. (49)

At first we consider auxiliary equation

c.o d . . : 3

55 + [o1 4+ 201 + @1] — 2c€[p1 + @1] + 2cp1 +wv® = 0.
It has the polynomial solution

2
oy = —w%[g‘l A3 (84 20)E2 — (8 L ANE + N,

2d
where A = —.
c
Now we consider equation (49) with w = 0. We divide the equation by ¢/2 and

put o1 = c*¢1/2. Then the equation takes the form
(€24 N[ty + 201 + 1] — AE[n + ] + deby — E(€2 + N2+ 20 (€2 +X) = 0. (50)

Its support and polygon are shown in Fig.

T
—2 1 5
Figure 13. Support and polygon of equation (50)).

As the inclination of the right edge is equal —3, then its solution in decreasing
powers of & begins from £3. So we look for its polynomial solution

=8+ BE+CE+D.
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We substitute that expression in equation (50)) and nullify coefficients for £°, £, €3,
€2, &1, €Y. We obtain six linear algebraic equations for three coefficients B,C,D.
Subsystem of first 4 equations for £7,6%,£3 €2 is triangle and has solution

B=-2, C=2+)\ D=—4\

Substitute there values in equation for ¢ and £°, we obtain equations 16\ = 0 and
—16\ = 0. Hence, A = 0, i.e. d = 0. Thus, equation has a polynomial solution
only for d = A = 0, and the solution is

=& — 267 4+ 2€.
Hence, the equation has a polynomial solution only if d = 0, and the solution 1s
i 3 2 3 2
o1 = —w [t — 46" + 862 — 8¢ + T[* — 267 + 2¢]. (5)
Theorem 8. For the equation Py in Case I, the second coefficient p1(€) in complicated
expansions of its solutions is polynomial for the additional family always
and (51)) for the main family iff d = 0.

4.4. Exotic expansions. We introduce new independent variable

E=2",7v€R, 7 #0. (52)
Then )
v = z"y@§, V' =19 (z'fyé) + i}(z’v)?% — i’i’Y%a (53)
x x x x
where © = dv/d¢. Then
xv = ivED
(54)
220" = =262 — Y260 — ivED .

Hence, formulas give
go = Y2(E20 + £€0) — 2202 + v + 2d
(2425 | e N D 9,99 3 2
g1 = (7£U+’y§v+wv)—§’yfv + wv® + 2cv” + 5dv.

We put ~
Go=90/7", 1 = 1/ D =w/y* E=c/¥, d=d/y.
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Then these formulas give
= v(E% + £0) — E20% 4 v + 2d
| 3 ) (55)
Gy = 02 [g% + &0 (1 — —)] — §vg%2 + ovd 4+ 2¢0% + Bdv .
vy
From the first formulae we have
%9 _ (0—205)5 +E+ %+ &0,
v de d¢

According to Theorem 6, all solutions to equation gy = 0 in the form of Laurent
series form one family of solutions

ve’

¢0:U:A£+B+C€_17
with following connections
B=—-¢  4AC =7 -2d.

As
v— 206 = —AE+ B+3CE, 45+ =AE - B4 CETT

1 ~
G = v + v? [z’;g? + 0€ (1 — —)] — gvg%ﬂ + 2¢0% + 5dv =
iy
=& [A% + 3A°BE” + 3(AB* + A°C)¢ + B® 4+ 6ABC + 3(AC” + B*C)¢ '+

2 4+ 3
L3BCE? 4 O] - AT 2P0 g2pd TS0
217y 217y
2+ 11i 24 1
I s Y it W SB®— TABC+
217y 247y

114
(a2 2 ot ) ey gt T e 082 = s
24y 21y 21y 24y
then equation for ¢ () is
ENR I S 2 . 9.
(A+B+CE) || ——1]o+ o1 +&én| +
iy \i7 i

+(—=AE+ B+3Ce™ [%% + E@l} + (A =B+ CE N1 +51=0.
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Its solution is the Laurent polynomial

A? 2AB B2 AC(2+67?)
o~ 2 2
Pi(e) = {(1+m)2€ Tt i T Ty
2BC C?
— T ——E77 |+
1 — iy (1 —iv)? (56)
. 2[_ A*2+1iy) ,,  AB ‘(h B
T2 e T ndre) 20+ )

AC(1 — 72) BC 1 02(2 — i)
(14922 iy(1 —iv) 2iy(1 —i)?

So, we have proved

Theorem 9. In exotic expansion (45)) solutions to equation Ps in Case I, coefficient
©1(€) is the Laurent polynomial (56)).

5. The fifth Painlevé equation P; in Case 11

5.1. Preliminary transformations. To obtain polynomial ¢j, we make in equa-

. . 1
tion (42) the power transformation z = —. Then
w

, ,w/ ; 211)/2 _ ww//

z =

Y

and equation (42)), multiplied by z°, takes the form

e 1
h(zw) 2 22ww” (1 + w) — 22w’ g tw)+ zww' (1 +w) + a(l + w)*+

+bw? + cxw?(w + 1)? + dz*w?(w + 1)*(1 + 2w) = 0.

Its support and polygon are shown in Fig. If write 7
h(zw) = ho(z,w) + zhy(zw) + 22hy(zw)
then
ho(z,w) =z*ww” (w + 1) — z?w'? (w + %) + zww'(w + 1)+
+ a(w + 1) + bw?, (58)

hy(zw) =cw?(1 +w)?,
ho(z,w) =dw?*(w + 1)*(2w + 1).
Now formulas and are again correct if we put w instead of v.
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Figure 14. Support and polygon of equation (57).

5.2. Complicated expansions. In h;(z,w) from (58)), we change the independent
variable x by £ = log x 4+ cy. We obtain

1
hi(&w) = ho(z,w) = dw(w + 1) — w? (w + 5) + a(w + 1)? + bw?,
I )

hi(éw) = hi(z,w) = cw?(w + 1)2,
hi(€w) = he(z,w) = dw?*(w + 1)(2w + 1) .
(

(39)

*

Let us find all solutions of equation Aj(£,w) = 0 in the form of Laurent series.

Theorem 10. All solutions w = py(&) of equation h(¢,w) = 0 from in the form
of Laurent series and different from constant form two families:

main(ifa+bd§foz7é0)
__a+tb 9 a « 5 Q
W= =— (€ + o) a+b—2(f+co) = (60)
and additional (if « = 0,a # 0)
w=gy=08E+c), 5°=2a. (61)

Here c is arbitrary constant.

Proof. We will consider 3 cases: 1)a # 0; 2)a=0,a #0; 3)a=a=0.
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Figure 15. Support and polygon of equation Aj(&,w) = 0.

Case 1) a # 0. Support and polygon I' of equation hj(£,w) = 0 are shown in
Fig.[15]
(0)

Right side of the boundary T of the polygon I consists of three vertices fl =
(—2,3), Fgo) = (0,2), FéO) = 0 and two edges Fg) and Fém. Corresponding truncations
are

IA”[{(O) = Ww? — v w, B;(O) = aw?, hzﬁ,(o)

fALﬂ{(l) = w? — w*w + aw?, ]A”L;@) = a(w + 1)* + bw?.

:a’

Characteristic equation for truncation iAf{(O) is —r = 0. It has unique solution r = 0.
But vector (1,0) does not belong to the normal cone

U = (P =X(01)+X(1.2), AMA2>0, A+ >0}

Truncations fzz(o) and ﬁg(o) have trivial characteristic equations o = 0 and a = 0, which

have no solutions. Truncated equation izi‘(l) = 0 has the power solution w = a&?/2.
According to Subsection 3.3 of [[11], we will find critical numbers of that solution.
We have

5%*(1) d2
5; = w2d—§2 - zwwd—g + 2w — * + 20w .
On the curve w = a&?/2, that variation gives operator
2¢4 d2 d
L(€) = ﬁ_ _ 2L 02 a2 a2

4 dez v g
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Characteristic polynomial of sum £(£)&F is

&2

v(k) = (k(k —1) =4k +4].

It has two roots k; = 1 and ky = 4. But k1 < 2, and ks > 2 and it is not a critical
number. So we have only one critical number £; = 1.
According to Subsection 3.4 of [11]], the set

Vo220 1eNy={0,—2 —4,---}.
Now the critical number k; = 1 does not belong to the set Kgl). Thus, according to
Theorem 3 [[11], equation h(£,w) = 0 has a solution in the form of Laurent series

w=a€ 247+ ) P, (62)
k=1

where v; = const. To find v, we put w = af?/2 + ~y into h(€,w). We have
w = a&, W = a, hence,

ho(§.0€% /2 + ) = alayy +a)§* + (290 + 1) (a0 + a) -

Both coefficients near £2 and £° are zero, iff 79 = —a/a. So, solution is indeed
the polynomial
w= at?/2 —ala.

Equation hj(£,w) = 0 does not contain explicitly the independent variable &, so to
its solution w(&) there correspond solutions w(& + ¢y), where ¢ is arbitrary constant.
Hence, we obtain family (60)).

To finish that case, we must consider the last truncation ﬁ;m
polynomial (a + b)£? + 2a€ + a?. Its discriminant

. It 1s the square

A = —4ab.

If A # 0, then the polynomial has two roots. Each of them is the constant
solution of the equation hj(£,w) = 0 and cannot be continued into power expansion.

If A =0,i.e. a = 0orb = 0, then the polynomial has one double solution w = 0
or w = —1. They are constant double solutions of the full equation Aj(£,w) = 0, and
does not give nonconstant solutions to equation hj(&,w) = 0 . But we are looking for
nonconstant solutions.

Case 2) a = 0,a # 0. ‘Support and polygon T of h{(&,w) are shown in Fig{l16 .

Right side of the boundary T of the polygon I consists of three vertices F( ) = = (—2,3),
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fgo) a2 A
3 I —
£
1 2 1
£
1y
TV
i i >
(0
,2 = ry)

q1

Figure 16. Support and polygon of equation hj(£,w) = 0 in case 2).

fgo) = (0,1), féo) = 0 and two edges fgl) and fgl). As in case 1), truncated equations,
corresponding to all vertices and edge Fél) do not give us power expansions of solutions
to equation hj(£,w) = 0. So we consider the truncated equation

liflk(l)  w? — itw + 2aw = 0.

It has power solutions w = 3¢ with 32 = 2a. The solution satisfies the equation

hi(&w) — Y (€ w) Y dw — i 2 +a=0.
Hence, the equation has family of solutions (61]).
Case 3) a = b = 0. Here all solutions of equation Aj({,w) = 0 belong to
[ca exp(cif) — 1]

_ deyexp(ci§)
No one of these solutions has a power expansion. [

Here

two-parameter family w =

, where c; and ¢, are arbitrary constants.

5h8—w(w+1)d—2—2 w+1 wi+2a(w+1)+21)w+w(2w+1)—u')2
dw de? 2 ) Ve '

Let us compute solution ¢; to equation for additional family (61). Here w =
B, = 0,1w? = 2a and equation divided by z is

BEBE + 1) [p1 + 241 + $1]) — B(2BE + 1) [p1 + ¢1] + B2 (BE+1)* = 0.

It has polynomial solution

o1 =cBl-BE + (28— 1)E+1]. (63)
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For the main family (60)), equation divided by = is

w(w+1) [p1 + 241 + ¢1] — € (2w+1) [p1 + ¢1] +a2w+1) 1 +cw’(w+1)* = 0,

2 g. It has the polynomial solution

where w = gf
2 «

p1(§) = —c [%254 —a%¢ + (207 + 5 —a) -

ala — «)

— (20 +a—2a) £+ ——| - (64)

Thus, we have proven

Theorem 11. In Case Il of equation P; the second coefficient ©1 of complicated

expansions is a polynomial for the additional family and polynomial
for the main family.

5.3. Exotic expansions. Let us introduce new independent variable ¢ = 27 ac-
cording to (52). Then, according to (53)), formulas (58)), divided by ~?, take the

forms

. 1
ho(&§,w) =y ho(z,w) = —w(w + 1) (&0 + &w) + (w + 5) i’ +

+a(w + 1)% + bw?, (65)

h(Ew) =y 2hi(zw) = éw?(w + 1)2,
where & = a/~%, b= b/, & = ¢/~
Theorem 12. All solutions w = ¢y (€) to equation ho(€,w) = 0 from in the form
of Laurent series form one family
w=@y=A{+B+C¢, (66)

where parameters are connected by equalities

1
2 Y

Proof. First we will show that parameters satisfy to for solution to
equation hy(,w) = 0. Let us denote

i - -1
B=a+b— 4AC:(d+b)2+&—b+Z. (67)

a=AE4+CE and B=A¢—Cet.
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Then & = AE — CE71, %20 = 20¢ 1 and & + €20 = a. So

ho(§w) = —(a+B)(a+B+1)@+(&+B+%)62+d(a+3+1)2+Z~)(a+B)2 =

1 ~
= —a’+af*—a’(2B+1)+ (B+ 5)52 +aa’ +ba® — B(B+1)a+2a(B+1)a+

. . - 1
+2bBa + a(B 4 1) +bB* = a[f* — o?] + o*[a+b— (2B + 1)] + (B + 5)/32+

+al2a(B+1)+2bB — B(B+1)] +a(B +1)* + bB2.

We have
B2—a?=(B—a)(B+a)=245(-20¢") = —4AC.

Hence, % = o® — 4AC and

- - 1 1
ho(é,w) = —4ACa +a*[a+b— (2B +1)+ B+ 5] — 4AC(B + §)+

. - - 1
+a[2a(B+1)+20B — B(B+1)]+a(B+1)*+bB*=a*[a+b— B — i

- ~ 1
+af2a(B +1) +20B — B(B+ 1) —4AC] + a(B + 1)* 4+ bB? — 4AC(B + 5)

But o? = A%? + 2AC + C?¢72, hence,

ho(&w) = (A2§2+02§‘2)(d+5—3—%)+a[2d(3+1)+253—3(3+1)—4AC]+

- 1 - 1
+&(B+1)2+bB2—4AC(B+§)+2AC(&+6—B—5)50.

It means that coefficients for £+2, o and £° are zero. Exactlya +b— B — 1 =

7 =0,1e.

i+b=DB+—; (68)

N —

. 1
O:2&(B+1)+26B—BQ—B—4AC:2(B+§)B+2EL—BQ—B—4AC:

— B%2 4+ 92a — 4AC

according to (68)), i.e.
4AC = B* + 2a. (69)

Finally,

" 1 - 1
a(B +1)* + bB* — 4AC(B + 5) =@+ b)B* + 2aB + a — 4AC(B + 5) =
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— (@4 b)[B* 4 24 — 4AC) =0
according to and (69)).

Now we will show that, for any solution
w=AL+B+CE+DE 4. 1>2 (70)
to equation ho(£,w) = 0, coefficient D = 0. We insert in ho(€,w) and find in it

a term with maximal power £, containing D. Terms of the third order in hy(£,w) are

—w? (E20 + &) + wEi? efQ

We assume that w = A& 4+ D&, then 20 + & = A€ + 12DE!
Q3 = —(A+ DEN (AL +1PDE) + (A + DET)(AE —IDE? =
(1 +1)242D 4+
Coefficient before the £2-! must be zero. But (I + 1)? # 0, A? # 0, hence D = 0. [

According to (65
Shy d? 1\ . ,d
— == 1) — — 1 2
" w(w + 1)&2 i w(w + 1)¢€ £+ <w+ >w§ df‘

+2a(w + 1) + 20w — (2w + 1) (20 + &) + 2ir®.

Equation for p1(€) is
a [% (% - 1) 1+ %f@l + 52951] +as [%%01 + 69571] +agpr+hi =0, (71)
where
ap = —w(w+1) = —A** -~ A2B + 1)¢ — 2AC — B(B+1)—
— (2B +1)Cet -2,
=(2w + )¢ —w(w + 1) = A%¢? — [2AC + B(B +1)] —2(2B + 1)C¢ ' —
—3C%¢72,
az =2a(w + 1) + 2bw — (2w + 1) (%0 + &) 4 E2i? = —A%? — 240+
+B(B+1)-C%?,

—w?(w +1)% = A%t +243(2B + 1)&% + [4A3C + A?p]2+
+ [6A%(2B +1)C + 2AB(B + 1)(2B + 1))¢ + 6A2C* 4+ 2A5C+
+ B3 B+ 1) +[64(2B+ 1)C?* +2B(B +1)(2B + 1)C)¢ 1+
+ [4AC? + BCYE2 +2(2B + 1)C3¢ 3 + e X s,
B=6B(B+1)+1.

2!
¢
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Support and the Newton polygon I' for equation are shown in Fig. As

q2 A

N

4 * * MG
—4 1 4

Figure 17. Support and polygon of equation (69)).

inclinations of side edges of the polygon I' are £2, then polynomial solutions to
equation should be as

o1 =D+ FEE+F+GE+HE?, (72)

Inserting that ¢, into equation ([71)), we obtain a linear system of 9 algebraic equations
for 5 coefficients D,F,F',GG,H. Equations correspond to vanish of coefficients near
€4, 63,62 6,60, 71 €72 ¢73, €74 From coefficients near &4, €3, €2, we find

e A? ¢ A(2B +1
DYD ——et_ pp - _ACBEY
(14 dv)? 1+
(73)
e 2AC(1 — ~? B(B+1)(1 —342
Pl p_ _2AC - B(B+D -3y
(1+72) (1+72)?
From coefficients near £ 2, £73, ¢4, we find
2 2B +1
2AC(1+ 7%  B(B+1)(1+59?)
F=FK=-c —c .
(1+7%) (1+72)?
According to and (74), equality I} = F5 is possible, iff
2AC+ B(B+1)=0. (75)
Then AACH? B(B 2
2 1
_ _ACY _ 2B(B+ 1)y (76)

A+ " A+7)
Inserting found values (73)), (74)), of coefficients D, F,F,G,H into equations near
¢ and £, we obtain, that for A(2B + 1)C # 0 they are fulfilled, if 4* = 1, i.e.
7% = £1. As 4% > 0, it means that v> = 1. We have obtain the second condition

ARB+1)C(*—1)=0. (77)
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Equation near £ is satisfied under substitution of find coefficients and condition (77)).
Thus, we have proven

Theorem 13. In the exotic expansion of solutions to equation Ps in Case II, the

second coefficient v1(€) is a Laurent polynomial (72)), (73)), (74), (76), iff 2 condi-
tions and are fulfilled.

6. The sixth Painlevé equation Fj

6.1. Preliminary transformations. Usually the sixth Painlevé equation [6] 1s

. y? 1 1 1 (1 1 1
y =—7\|-+ + -~y |-+ + +
2 \y y—1 y—=zx r z—1 y—u

1) (y — 1) (y — _ 1
LAYy -2 y-Dy—w) ~ yly—2) yy—-1)
2z —1)? =12  2@-Dy-1) 2*(z-1)>y—2)
We put z = —y, multiply the equation by its common denominator z2(x — 1)%y(y —

1)(y — x) and translate all terms into the right side of equation. So we obtain the
equation

g(z,2) ) —"2*(x — 1) 2(z + 1) (2 +2)+

+ %:/2 2 — 1)2(2 + 1)( + &) + 2(2 + &) + 2(2 + 1)]—
— 2z 4+ D[z - D3z +2) + 2% (2 — D(z+2) +2%(x — 1)(z + 2) — 2% (2 — 1)+
+a(z+ 1Dz +2)? +Hbz(z + 1Dz +2)2 +c(z — 1)2%(2 — 2)*+
+dr(z —1)*2%(z+ 1) = 0.
(78)

Support and polygon of the equation are shown in Fig.[18]
If we write

g(x,2) = go(x,2) + xg1(x,2) + 513292(:5,2) + :C3g3(x,z)
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0 1 Q141

Figure 18. Support and polygon of equation ([78)).
according to Subsection 2.2, then

3
go(z,2) = — 22?2 (2 + 1) + 22?2 (52 + 1) — (2 + 1) +at(z 4+ 1) — 2t

1
gi(z,2) =2"2%(2 +1)(22 — 1) — 22?2 (322 +z— 5) + 32222 (2 + 1)+

+2a23 (2 4+ 1) + 022 (2 + 1)* + c2®(2 — 2) — d2* (2 + 1),
g(2,2) = — 2"2%2(2 + 1) (2 — 2) + 2%2%(322 — 22 — 2) — Zwz(2 +1)(22 — 1)—
—az*(z+ 1) = bz(z — 1) — c2*(22 — 1) — d2*(z + 1),
g3(7,2) = — 22"2%2(2 + 1) + 22222 + 1) — Zwz(z + 1) + b(z + 1) — 22,
Note, that go(z,z) coincides with the upper line of formula (42)), multiplied by z, 1if

—c change by b. Now in equation ([78)) we make the power transformation z = —.

w
Then

, w’ L, 2wt —ww

z = —— z =
w?’ w3 ’

2
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1
Denote h;(z,w) = g <x,—> w5, i =0,1,2,3. Then
w

1
ho(z,w) =ww"2*(1 + w) — w?a? <w - 5) + wrw(w + 1) + a(w + 1)* — cw?,

3
h(zw) =ww"2*(w + 1)(w — 2) + w2? (—§w2 +w + 1> — 3w'zw(w + 1)+

+ 2aw(w + 1)* + cw?(1 — 2w) + (b — d)w?*(w + 1)2.
(79)
After change —c by b, ho(z,w) coincides with ho(x,w) from (58)), but in 2y (z,w) here
only one term (b — d)w?(w + 1)? coincides with h(z,w) in (58)), but now h; has
several other terms.

6.2. Complicated expansions. In h;(z,w) from (79), we change independent vari-
able £ = logx + ¢y and obtain

hi(€,w) =ho(zw) = ww(w + 1) — i? <w + %) +alw + 1)? — cw?,

bi(€w) (o) = ol + 1w —2) — 0 (S0~ 0= 1) = gl + 14

+ 2aw(w + 1)* — cw?*(2w — 1) + ww?(w + 1),

where w = b — d.
According to Theorem 10 all nonconstant power series solutions to equation
hi(&,w) = 0 form two families:

main(ifozdéfa—c;éO)

w= o= (E+w) -~ (80)

2
and additional (if « = 0, a # 0)

w=p =P +a), B°=2a, (81)

where ¢ is arbitrary constant. Let us compute the second coefficient (&) of expan-
sion (435]), using equation (46]). Here

* 2
55’”;0 — w(w+ 1)% ~u+ 1)wdilf 4 2a(w + 1) — 2w + (2w + 1)—
-9 def

—w- = CL1—+CL2—+CL3.

de? d¢
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According to Corollary 1 equation for ¢ is equivalent to equation
arlp1 + 2¢1 + G1] + azlpr + 1] +agpr + by = 0. (82)
Denote ¢ = logz + ¢(. For the additional family
ap = BE(BE+1), az=—PB(2B{+1), a3=0,
hy = 2a(w + 1)* — Bw(w + 1)* + ww?(w + 1)?,
because here a = c. Equation has polynomial solution
1 = 2wa&? + [w(da — B) + 2a)€ +w(B — 4a) + f — 2a. (83)

Calculation of 9 see in [9]].
For the main family

ap =ww+1), a=—-aéw+1), a3=al2w+1),
R = ww?(w + 1)? — aw(w + 1)* 4+ 2a(w + 1)%.
If in equation h* = ww?*(w+1)?, then according to Theorem 11, it has polynomial

solution with w instead of c. Now we consider equation for w = 0. We look
for its polynomial solution in the form

0= A+ BE +CE+DEFE. (84)
For 5 coefficients A,B,C,D,E we obtain a system of 9 linear algebraic equations.
They correspond to vanishing coefficients near £%, 7, - - -, €9, which arrive after

substitution of expression (84) into equation (82)). From coefficients near £°, £7, - - -,
¢4, we obtain

A=0, B=d*/2, C=—-a*, D=d*+a—a, E=0.

Inserting these values into coefficient near &3, £2, €1, €°, we obtain the zeroes. And
polynomial solution of the full equation has

042 a

2

A:—wZ,B:wQZJr?,C:—w(20¢2+%—a>—042, (85)

D:w(2oz2—|—oz—2a)—l—042—|—oz—a,E:—wa(a—;a).
«

Thus, we have proven

Theorem 14. The second coefficient ©1 of the complicated expansion of solution

to equation Py is a polynomial (84), for the main family and is a polynomial
for the additional family.

Calculation of 9 see in [9]].
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6.3. Exotic expansions. Let us introduce new independent variable £ = %7 accord-
ing to (52), (53)), (54). Then expressions after division by ~? take forms

ho(§w) =7 %ho(z,w) = — (W€ + B w(w + 1) + W (w + §) + d(w + 1)? — aw?,
hi(§w) = vl (z,w) = — (W€ + W& w(w + 1)(w — 2) + & (Fw* —w — 1)+
+Z,igww(w + 1) 4 2aw(w + 1)* — éw?* (2w — 1) + ow?(w + 1)?,
! (36)
where )
i=a/y’,b=0/7c=c/v, 0 =w/V,.

In ho(€.w) coincides with hg(¢,w) from (63), if —c change by b. So according
to Theorem 12} all power series solutions to equation hg(&,w) = 0 from (86) are

w=py=As+B+C¢

where

B:&—é—%, 4AC=(C~L—5)2—|—(~I—|—5—|—%.
According to (86)),
@—— w(w + 1) — + [(2w + 1)wé — w(w + )] +2a(w +1)—
Sw dg? d¢

—2¢w — (2w + 1) (& + 20 4 2

According to Corollary 2, equation for (&) is (7I) with following changes:
ay,az and a3 are the same as in Subsection 5.3, with —2¢ instead of 20, hy = hig+whs,
where hq5 1s from Subsection 5.3 and

~ 2+ 3+ 2 2+
h16 _ + Z714454 + ( + Z/VB + + 27) A3€3+
217y 1y 1y

2t 4 24
<10AC 2 A g S5, 2 ”) A2
1y 1y 217y
iy —1 v — 1
+(204BC 1440 -8 = ps (T g Sp ge
21y 24y 2

1
+20AB*C + 14ABC + ZB(B +1)(9B% + 13B + 2)+

1+ 62 141 o}
+. Z’}/BZ}_}_ﬂBQ__B) C€_1+
21y 24y 2

+ (ZOABC +4AC —
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2 — 44 3— 51 2—1

+ (10AC = At - W) 2624
1y 1y 217y
1y 1y 24y

Polynomial solution ¢, to new equation ([71)) we look for in the form ([72)). Again
we obtain a system of 9 linear algebraic equations for 5 coefficients. Let us consider
case @ = 0. From vanishing coefficients near £*,£3,£2, we find

(2 + iy)y? 2

D= —
2iy(1 +47)?

B 2+ iy N [ Q 1 ] 5
E=— ; ; + — ; A=-—- - . + = A7
[w(l +iy)  2iy(1 +w)} ! 2ir(L+iy)  2iy]

(87)
2 4+ i) (1 4 4iy — 2
Fy = 2AC? [( to)Ardiv—y) 8 2] +
2iy(1 +iv?) (1 —iv)
24+ 1y)(1+ 4 2 4
2iy(1 + iy2)? (1 —i)?
where ) = 2B + 1.
From vanishing coefficients near £ ~*,£73.£72, we obtain
_ 2=t
2iy(1—iy)?
B 2 in 0 1
G = 2C = 2C
[W(l —) " 2in(1— wJ k [21'7(1 —) 217] LS
(88)
2 i) (1 — diry — 972
Fy = —2ACH? ( W)( -W ) 5. —
2iy(1 + iy?)? (1+17)
2 — i) (1 — 4iry — T2 4
2iy(1 +iy?)? (1 +iv)?
Equality F; = F} is possible, iff 2AC' + B(B + 1) = 0, see (75). Then
08 08
F=—24C—" _—B(B+1) (89)

(1+~%)? (1++%)%
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Coefficients near ¢! and £~ vanish for values (87)), (88), (89). Coefficient near
¢ vanishes if
AC(6B* - B —3)=0. (90)

If & # 0, we have additional condition for polynomiality of 1 (), i.e.
wA2B+1)C(* —1)=0. (91)

Thus, we have proven

Theorem 15. In the exotic expansion (45| of solutions to equation Py, the second coef-

ficient p1(&) never is a Laurent polynomial (72), (73)+ @7), (74+ (88), (76)+
with w = b — d instead of ¢, if 3 conditions ([75)), and are fulfilled.

Usually the equation for ¢y (€) has two solutions: with increasing and with
decreasing powers of £&. But they coincide if the solution is an usual or Laurent
polynomial. If all coefficients () are polynomials then there is one family of exotic
expansions. In another case there are two different families. Details see in [10]].

7. Conclusion

In both cases: complicated and exotic expansions we have its own alternative.
In complicated expansion the coefficient () is either a polynomial or a divergent
Laurent series. In exotic expansion the coefficient () is either a Laurent polynomial,
in that case it is unique, or a Laurent series, then there are two different coefficients in
form of convergent series. The convergence follows from [12].

In all considered cases, when coefficient ¢ (§) = DE™ + BEM™L 4 Feém=2 4

. of the complicated or exotic expansion is an usual or Laurent polynomial, its
coefficients D,/ F) .. ., satisfy to a system of linear algebraic equations. And number
of equations is more then number of these coefficients. Such linear systems have
solutions only in degenerated cases when rank of the extended matrix of the system is
less then the maximal possible. Existence of such situations in the Painlevé equations
shows their degeneracy or their inner symmetries.

We have considered 4 cases: equations P3, Case I of P5, Case Il of P5, Fs. In
each of them there are 3 families: additional complicated, main complicated and exotic.
Among these 12 families, 9 have polynomial second coefficient, but 3 families demand
for that some conditions on parameters. Namely, main complicated family for Case |
of P; demands one condition; exotic families for Case II of P; and for F; demand 2
conditions and 3 conditions correspondingly. In all cases number of conditions is less
than difference between number of equations and number of unknowns.

All these calculations were made by hands. Further computations should be
made using Computer Algebra.
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