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УДК 517.925

Alexander Dmitrievich Bruno

Complicated and exotic expansions of solutions to the Painlevé equations.

We consider the complicated and exotic asymptotic expansions of solutions to

a polynomial ordinary differential equation (ODE). They are such series on integral

powers of the independent variable, which coefficients are the Laurent series on

decreasing powers either of the logarithm of the independent variable or on its pure

imaginary power correspondingly. We propose an algorithm for writing ODEs for

these coefficients. The first coefficient is a solution of a truncated equation. For

some initial equations, it is a polynomial. Question: will the following coefficients be

polynomials? Here the question is considered for the third (P3), fifth (P5) and sixth

(P6) Painlevé equations. We have found that second coefficients in seven of eight

families of complicated expansions are polynomials, as well in two of four families of

exotic expansions, but in other three families, polynomiality of the second coefficient

demands some conditions. We give detailed proofs and calculations of these results.

Key words: expansions of solutions to ODE, complicated expansions, exotic

expansions, polynomiality of coefficients, Painlevé equations.

Александр Дмитриевич Брюно

Сложные и экзотические разложения решений уравнений Пенлеве. Пре-

принт Института прикладной математики им. М.В. Келдыша РАН, Москва, 2018.

Рассматриваются сложные и экзотические асимптотические разложения ре-

шений полиномиального обыкновенного дифференциального уравнения (ОДУ).

Это такие ряды по целым степеням независимой переменной, коэффициенты

которых суть ряды Лорана либо от логарифма этой переменной или от мнимой

степени соответственно. Предлагается алгоритм составления ОДУ для этих коэф-

фициентов. Первый коэффициент является решением укороченного уравнения.

Для некоторых исходных уравнений он является многочленом. Спрашивается:

будут ли многочленами следующие коэффициенты? Здесь этот вопрос изучается

для третьего, пятого и шестого уравнений Пенлеве. Оказалось, что в семи из

восьми семейств сложных разложений и в двух из четырёх семейств экзотиче-

ских разложений вторые коэффициенты — многочлены. Но в трёх оставшихся

семействах вторые коэффициенты являются многочленами только при опреде-

лённых условиях. Здесь подробно изложены доказательства и вычисления этих

результатов.

Ключевые слова: разложения решений ОДУ, сложные разложения, экзоти-

ческие разложения, полиномиальность коэффициентов, уравнения Пенлеве.
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1. Introduction

In 2004 I proposed amethod for calculation of asymptotic expansions of solutions

to a polynomial ordinary differential equation (ODE) [1]. It allowed to compute power

expansions and power-logarithmic expansions (or Dulac series) of solutions, where

coefficients of powers of the independent variable x are either constants or polynomials
of logarithm of x. I will remind the method lately. Later it is appeared that such
equations have solutions with other expansions: they can have coefficients of powers of

x as Laurent series either in increasing powers of logx or in increasing and decreasing
imaginary powers of x. They are correspondingly complicated (psi-series) [2] or
exotic [3] expansions. Methods from [1] are not suitable for their calculation. Now

I have found a method to writing down ODE for each coefficient of such series

(Section 2). The equations are linear and contain high and low variations from some

parts of the initial equation. The first coefficient is a solution of the truncated equation,

and usually it is a Laurent series in logx or in xiγ. But it is a polynomial or a Laurent
polynomial for some equations.

Question: Will be the following coefficients of the same structure?

I consider this question for three Painlevé equations P3, P5 and P6, because

among 6 Painlevé equationsP1–P6 there are 3 equationsP3, P5, P6 having complicated

and exotic expansions of solutions ( [4–6]). First coefficients for equations P3, P5 and

P6 are polynomials in logx in complicated expansions and Laurent polynomials in x
iγ

in exotic expansions [4,6]. Each of the Painlevé equationsP3, P5 andP6 has 4 complex

parameters a,b,c,d. Two of them are included into the truncated equation. These three

Painlevé equations have 8 families of complicated expansions and 4 families of

exotic expansions. I have calculated several first polynomial coefficients for all these

12 families, sometimes under some simplifications. Second coefficients in 7 of 8

families of complicated expansions are polynomials, as well in 2 families of exotic

expansions, but one family of complicated and two families of exotic expansions

demand some conditions for polynomiality of the second coefficient. The third

coefficient is a polynomial ether always, either under some additional restrictions on

parameters, or never. Results for equation P3, P5, P6 are given in Section 3, 4 and 5,

6 correspondingly.

2. Writing ODEs for coefficients

2.1. Algebraic case. Let we have the polynomial

f(x,y) (1)

and the series

y =
∞∑
k=0

ϕk x
k , (2)
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where coefficients ϕk are functions of some quantities. Let we put the series (2) into

the polynomial (1) and will select all addends with fixed power exponent of x. For

that, we break up the polynomial (1) into the sum f(x,y) =
m∑
i=0

fi(y)x
i, and we write

the series (2) in the form y = ϕ0+
∞∑
k=1

ϕk x
k def
= ϕ0+∆. Then∆j =

∞∑
k=j

cjk x
k, where

coefficients cjk are definite sums of products of j coefficients ϕl and corresponding

multinomial coefficients [7]. At last, each item fi(ϕ0 +∆) can be expanded into the
Taylor series

fi =
∞∑
j=0

1

j!

djfi
dyj

∣∣∣
y=ϕ0

∆j .

So the result of the substitution of series (2) into the polynomial (1) can be

written as the sum

m∑
i=0

xi

fi(ϕ0) +
∞∑
j=1

1

j!

djfi(ϕ0)

dyj

∞∑
k=j

cjk x
k


of items of the form

xi
1

j!

djfi(ϕ0)

dyj
cjk x

k . (3)

Here integral indexes i,j,k ≥ 0 are such

k ≥ j; if j = 0, then k = 0 . (4)

Set of such points (i,j,k) ∈ Z3 will be denoted as M. At last, all items (3) with

fixed power exponent xn are selected by the equation i+ k = n. The setM can be

considered as a part of the integer lattice Z3 in R3 with points (i,j,k), which satisfy
(4).

If we look for expansion (2) as a solution of the equation f(x,y) = 0 and want to
use the method of indeterminate coefficients, then we obtain the equation f0(ϕ0) = 0
for the coefficient ϕ0, and equation

df0(ϕ0)

dy
ϕnx

n +
∑

(i,j,k)∈N(n)

xi
1

j!

djfi(ϕ0)

dyj
cjk x

k + xnfn(ϕ0) = 0 , (5)

for the coefficient ϕn with n > 0, where N(n) = M ∩ {j > 0, i + k = n and j >
1, if i = 0}. That equation can be canceled by xn and be written in the form

df0(ϕ0)

dy
ϕn +

∑
(i,j,k)∈N(n)

1

j!

djfi(ϕ0)

dyj
cjk + fn(ϕ0) = 0 . (6)
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Theorem 1 ( [8]). If df0(ϕ0)/dy 6= 0, then coefficientsϕn can be found from equations

(6) successfully with increasing n.

2.2. Case of ODE. If f(x,y) is a differential polynomial, i.e. it contains derivatives

dly/dxl, then the job of derivatives
djfi
dyj

play variations
δjfi
δyj

, which are derivatives

of Frechet or Gateaux. Here the j-variation
δjf

δyj
=

djf

dyj
, if the polynomial does

not contain derivatives, and variation of a derivation is
δ

δy

(
dky

dxk

)
=

dk

dxk
, and for

products
δ(f · g)
δy

= f
δg

δy
+
δf

δy
· g , δ

δy

(
dky

dxk
· d

l

dxl

)
=

dk+l

dxk+l
.

Analogue of the Taylor formula is correct for variations

f(y +∆) =
∞∑
j=0

1

j!

δjf(y)

δyj
∆j .

Let now we have the differential polynomial f(x,y) and we look for solution of
the equation f(x,y) = 0 in the form of expansion (2). Here the technique, described

above for algebraic equation, can be used, but with the following refinements.

1) According to [1], differential polynomial f(x,y) is a sum of differential

monomials a(x,y), which are products of a usual monomial const · xrys and sev-
eral derivatives dly/dxl. Each monomial a(x,y) corresponds to its vectorial power
exponent Q(a) = (q1,q2) under the following rules: Q(const) = 0, Q(xrys) =
(r,s), Q(dly/dxl) = (−l,1), vectorial power exponent of a product of differential
monomials is a vectorial sum of their vectorial power exponentsQ(ab) = Q(a)+Q(b).
Set S(f) of all vectorial power exponents Q(a) of all differential monomials a(x,y)
containing in f(x,y) is called as support of f . Its convex hull Γ(f) is a Newton poly-

gon of f . Its boundary ∂Γ consists of vertices Γ
(0)
j and edges Γ

(1)
j . To each boundary

element Γ
(d)
j corresponds the truncated equation f̂

(d)
j = 0, where f̂

(d)
j is a sum of all

monomials with power exponents Q ∈ Γ
(d)
j . The first term of solution’s expansion to

the full equation is a solution to the corresponding truncated equation. Now the part

fi(x,y) contains all such differential monomials a(x,y), for which in Q(a) the first
coordinate q1 = i. Besides, we assume that f(x,y) has no monomials with q1 < 0,
and f0(y) 6≡ 0. Then all formula of the algebraic case with variations instead of
derivations are correct.



– 6 –

2) Variations are operators, which are not commute with differential polynomials.

So the formulae (5) takes the form

δf0
δy

xnϕn +
∑

(i,j,k)∈N(n)

xi
1

j!

δjfi
δyj

xkcjk + xnfn = 0 , (7)

but in it we cannot cancel by xn and obtain an analog of formulae (6). In (7) all
δjfi/δy

j are taken for y = ϕ0.

Theorem 2 ( [8]). In the expansion (2) coefficient ϕn satisfies equation (7).

3) Rules of commutation of variations with functions of different classes exist.

If ϕk is a series in logx, then ξ = logx and xs = esξ.

Lemma 1 ( [4]).

dn

dξn
[
esξϕ(ξ)

]
= esξ

n∑
k=0

(
n

k

)
sn−kϕ(k)(ξ) ,

where

(
n

k

)
are binomial coefficients and ϕ(k) is the k-th derivation of ϕ(ξ) along ξ.

Proof follows from the Leibniz’s formula for derivation of a product.

Corollary 1.
d

dξ
[xsϕ(ξ)] = xs[sϕ(ξ) + ϕ̇(ξ)] ,

d2

dξ2
[xsϕ(ξ)] = xs[s2ϕ(ξ) + 2sϕ̇(ξ) + ϕ̈(ξ)] .

If ϕk is a series in x
iγ, then ξ = xiγ and xs = ξs/(iγ).

Lemma 2 ( [9]).

dn

dξn

[
ξs/(iγ)ϕ(ξ)

]
=

= ξs/(iγ)

[
n−1∑
k=0

(
n

k

)
s

iγ

(
s

iγ
− 1

)
. . .

(
s

iγ
− n+ k + 1

)
ϕ(k)(ξ)

1

ξn−k
+ ϕ(n)

]
.

Corollary 2.

ξ
d

dξ
[xnϕ(ξ)] = xn

[
n

iγ
ϕ+ ξϕ̇

]
,
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ξ2
d2

dξ2
[xnϕ(ξ)] = xn

[
n

iγ

(
n

iγ
− 1

)
ϕ+

2n

iγ
ξϕ̇+ ξ2ϕ̈

]
.

These Lemmas give rules of commutation of an operator with xs. Applying
them in equation (7), we can cancel the equation by xn and obtain an equation without
x, only with ξ. So the algorithm consists of the following steps.

Step 0 From the initial equation f(x,y) = 0, we select such truncated equation

f̂
(1)
1 (x,y) = 0, which corresponds to edge Γ

(1)
1 of the polygon Γ of the differential

sum f(x,y) and has a complicated or exotic solution depending from logx or
xiγ, γ ∈ R correspondingly.

Step 1 We make a power transformation of the variables y = xlz to make the trun-
cated equation correspond to the vertical edge.

Step 2 We divide the transformed equation g(x,z) = 0 into parts gi(x,y)x
i, corre-

sponding to different verticals of its support.

Step 3 In these parts gi(x,y)x
i we change the independent variable x by logx or by

xiγ.
Step 4 We write down equations for several first coefficients ϕk.

Step 5 Using the rules of commutation, we exclude powers of x from these equations

and we obtain linear ODEs for coefficients with independent variable logx
or xiγ. Their solutions are power expansions and can be computed by known
methods from [1].

3. The third Painlevé equation P3

3.1. Truncated equation and its logarithmic solutions. The third Painlevé equa-

tion P3 is

y′′ =
y′2

y
− y′

x
+
ay2 + b

x
+ cy3 +

d

y
.

Let multiply it by its denominator xy and translate the left hand side into right side.
Then we obtain the equation P3, written as a differential polynomial

f(x,y)
def
= −xyy′′ + xy′2 − yy′ + ay3 + by + cxy4 + dx = 0, (8)

where a, b, c, d are complex parameters. Its support and polygon for a,b,c,d 6= 0 are

shown in Fig. 1. The edge Γ
(1)
1 corresponds to the truncated equation

f̂
(1)
1

def
= −xyy′′ + xy′2 − yy′ + by + dx = 0. (9)

After the power transformation y = xz and canceling by x, the full equation (8)
became

g
def
= −x2zz′′ + x2z′2 − xzz′ + bz + d+ ax2z3 + cx4z4 = 0. (10)
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2

4
q2

−1 0 1

Γ
(0)
1

q1

Γ
(1)
1

Figure 1. Support and polygon of the equation (8) for a,b,c,d 6= 0.

2

4

q2

0 1 2 3 4

Γ̃
(1)
1

q1

Figure 2. Support and polygon of the equation (10) for a,b,c,d 6= 0.

Here the truncated equation (9) takes the form

g0
def
= −x2zz′′ + x2z′2 − xzz′ + bz + d = 0 . (11)

Support and polygon of equation (10) are shown in Fig. 2. Here the truncated equation

(11) corresponds to the vertical edge Γ̃
(1)
1 at the axis q1 = 0. Here g2 = az3, g4 = cz4.

After the logarithmic transformation ξ = logx, equation (11) takes the form

h0
def
= −zz̈ + ż2 + bz + d = 0, (12)

where ż = dz/dξ. Support and polygon of equation (12) are shown in Fig. 3 in the
case bd 6= 0. Here h2 = az3, h4 = cz4.

Let b 6= 0. The edge Γ̃
(1)
1 of Fig. 3 corresponds the truncated equation ĥ

(1)
1

def
=

−zz̈+ ż2+bz = 0. It has the power solution z = −bξ2/2. According to [1], extending
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1

2

q2

−2 −1 0

Γ̃
(1)
1

Γ̃
(1)
2

q1

Figure 3. Support and polygon of the equation (12) with bd 6= 0.

it as expansion in decreasing powers of ξ, we obtain the solutions of equation (11)

z = −b
2
(logx+ c̃)2 − d

2b
= ϕ0, (13)

where c̃ is arbitrary constant.
Let us consider equation (11) in the case b = 0, d 6= 0. Then equation (12) has

the form

h0
def
= −zz̈ + ż2 + d = 0.

Its polygon coincides with the edge Γ̃
(1)
2 in Fig. 3. The equation has solutions

z = ±
√
−d (logx+ c̃) = ϕ0. (14)

Thus, we have proved

Theorem 3. All nonconstant solutions to equation (12), expanded into power series

in decreasing powers of ξ, form two families:

the main family (13) for b 6= 0; and
the additional family (14) for b = 0, d 6= 0.

Solutions to equation (10) have the form of expansion

z = ϕ0(ξ) +
∞∑
k=1

ϕ2k(ξ)x
2k, (15)

where ϕ0 is given by (13) or (14).

In the first case b 6= 0, we call family of solutions (15) as main, and in the
second case b = 0, d 6= 0, we call the family of solutions (15) as additional.

According to Theorem 2, equation for ϕ2 is

δh0
δz

(x2ϕ2) + x2h2(ϕ0) = 0. (16)
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According to (12)

δh0
δz

= −z̈ − z
d2

dξ2
+ 2ż

d

dξ
+ b,

δ2h0
δz2

= 0. (17)

According to (10) h2 = az3 and according to Corollary 1

d

dξ
x2ϕ2 = x2 [2ϕ2 + ϕ̇2] ,

d2

dξ2
x2ϕ2 = x2 [4ϕ2 + 4ϕ̇2 + ϕ̈2] .

So, equation (16), after canceling x2, takes the form

−z [4ϕ2 + 4ϕ̇2 + ϕ̈2] + 2ż [2ϕ2 + ϕ̇2] + (b− z̈)ϕ2 + az3 = 0, (18)

where z = ϕ0 from (13) or (14).

3.2. The additional complicated family. Let ξ = logx+ c̃, then, according to (14),
z = ϕ0 = βξ, β2 = −d, ż = β, z̈ = 0, and equation (18) is

−β ξ [4ϕ2 + 4ϕ̇2 + ϕ̈2] + 2 β [2ϕ2 + ϕ̇2] + a(β ξ)3 = 0 .

Its support and polygon see in Fig. 4.

−1 1 3
0 q1

q2

1

Figure 4. Support and polygon of equation for ϕ2 in additional complicated expansion.

Cotangent of the angle of inclination of its right edge equals to −2. So we look
for polynomial solution of degree 2. Indeed that equation has a polynomial solution:

ϕ2 = −ad
4

(
ξ2 − ξ +

1

2

)
.

Here a linear system of 4 algebraic equation is satisfied for 3 constant coefficients.

According to Theorem 2, equation for ϕ4 is

δh0
δz

x4ϕ4 + x2
δh2
δz

x2ϕ2 + x4h4(ϕ0) = 0 . (19)
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According to Corollary 1

d2

dξ2
x4ϕ4 = x4[16ϕ4 + 8ϕ̇4 + ϕ̈4] ,

d

dξ
x4ϕ4 = x4[4ϕ4 + ϕ̇4] .

Here
δh2
δz

=
dh2
dz

= 3az2, h4 = cz4.

So after canceling by x4, equation (19) takes the form

−βξ[16ϕ4 + 8ϕ̇4 + ϕ̈4] + 2β[4ϕ4 + ϕ̇4] + 3aβ2ξ2ϕ2 + c(βξ)4 = 0 . (20)

Its support and polygon are shown in Fig. 5.

−1 1 4
0 q1

q2

1

Figure 5. Support and polygon of the equation (20).

Cotangent of the angle of inclination of its right edge equals to −3. So the
solution to equation (14) may be polynomial of order 3

ϕ4 = Aξ3 +Bξ2 + Cξ +D .

Then the sum of two first addends in (19) is

−16βAξ4+(−16B−16A)βξ3+(−16C−8B)βξ2+(−16D+2B)βξ+2(4D+C)β .

Here coefficients near ξ2, ξ1 and ξ0 = 1 for βB, βC, βD form the matrix −8 −16 0
2 0 −16
0 2 8


with zero determinant. From the other side, the sum of two last addends in (20) is

3aβ2ξ2ϕ2 + c(βξ)4 =
3a2d2

4

(
ξ4 − ξ3 +

1

2
ξ2
)
+ cβ4ξ4 .
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Coefficients of that sum near ξ2, ξ1 and 1 are
3

8
a2d2, 0 and 0 correspondingly. Hence,

the linear system of equations for A,B,C,D has a solution only if
3

8
a2d2 = 0. As

d 6= 0, then we obtain the condition a = 0 for existence A,B,C,D. Under the
condition

ϕ4 =
cβ3

16

(
ξ3 − ξ2 +

1

2
ξ − 1

8

)
. (21)

As a = 0, then g = g0 + x4g4, ϕ2 = 0, and the expansion of solution contains powers
of x, which are multiple to 4.

Theorem 2 gives for ϕ8 the equation

δh0
δz

x8ϕ8 + x4
δh4
δz

x4ϕ4 = 0 . (22)

According to (17), here
δh0
δz

= −z d
2

dξ2
+ ż

d

dξ
,
δh4
δz

=
dg4
dz

= 4cz3. According to

Corollary 1

d2

dξ2
x8ϕ8 = x8[64ϕ8 + 16ϕ̇8 + ϕ̈8] ,

d

dξ
x8ϕ8 = x8[8ϕ8 + ϕ̇8] .

As h4 does not contain derivatives, then variation

δh4
δz

=
dh4
dz

= 4c (βξ)3

and it commutes with x4ϕ4. Canceling equation (22) by x
4, we obtain equation

−βξ [64ϕ8 + 16ϕ̇8 + ϕ̈8] + 2β [8ϕ8 + ϕ̇8] + 4cβ3ξ3ϕ4 = 0 .

It has the polynomial solution

ϕ8 =
c2β5

162

(
ξ5 − 2ξ4 +

59

32
ξ3 − 59

64
ξ2 +

59

4 · 64
ξ − 59

32 · 64

)
.

According to Theorem 2, we obtain the equation for ϕ12

δh0
δz

x12ϕ12 + x4
δh4
δz

x8ϕ8 + x4
1

2

δ2h4
δz2

(
x4ϕ4

)2
= 0 .

According to Corollary 1, it has the form

−βξ[144ϕ12+24ϕ̇12+ϕ̈12]+2β[12ϕ12+ϕ̇12]+4c(βξ)3ϕ8+
1

2
·6c(βξ)2ϕ2

4 = 0 . (23)
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If to look for solution of the equation as the polynomial of order 7

ϕ12 = Eξ7 + Fξ6 +Gξ5 +Hξ4 + Iξ3 + Jξ2 +Kξ + L ,

then the sum of terms of small powers of ξ in the first two addends in (23) is

β(−144K − 24J)ξ2 + β(−144L+ 2J)ξ + β(24L+ 2K) .

Matrix of coefficient near βJ, βK and βL is −24 −144 0
2 0 −144
0 2 24

 .

It has zero determinant. From other side, terms of smallest power of ξ in the remaining
part of equation (23) are

3cβ2

(
cβ3

16

)2 (
−1

8

)2

ξ2 (24)

according to (21). The linear algebraic system of equations forE, . . . ,L has a solution,

if the coefficient in (24) equals to zero. As β 6= 0, then c = 0. In that case the full equa-

tion is degenerated into truncated one g0 = 0, and in expansion z =
∞∑
k=0

ϕ4k(ξ)x
4k all

ϕ4k = 0 for k > 0. That is the trivially degenerated integrable case with a = c = 0.
So we have proved

Theorem 4. In expansion (15) of the additional complicated family of solutions to

the equation P3, polynomial coefficients are ϕ2 for any values of parameters a and
c; also ϕ4, ϕ6 = 0, ϕ8 are polynomials for a = 0. The fifth coefficient ϕ8 never is a

polynomial, if |a|+ |c| 6= 0.

3.3. The main complicated family. Let put ξ = logx+ c̃, then solution (13) is:

z = −b
2
ξ2 − d

2b
= ϕ0(ξ) .

Here ż = −bξ, z̈ = −b and the equation (18) has the polynomial solution

ϕ2 =
ab2

16

[
ξ4 − 2ξ3 + (2 + 2λ)ξ2 − (1 + 2λ)ξ + λ2

]
,

where λ = d/b2.
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Theorem 5. In expansion (15) of the main complicated family of solutions to the

equation P3, the second coefficient ϕ2 is always a polynomial.

Farther we consider the main family under the restriction d = 0. Then λ =

0, z = −b
2
ξ2, ż = −bξ, z̈ = −b and

ϕ2 =
ab2

16
(ξ4 − 2ξ3 + 2ξ2 − ξ) .

According to Theorem 2, equation for ϕ4 is

δh0
δz

x4ϕ4 + x2
δh2
δz

x2ϕ2 + x4h4 = 0 .

According to (17) and Corollary 1,

δh0
δz

x4ϕ4 = x4
b

2
ξ2 [16ϕ4 + 8ϕ̇4 + ϕ̈4]− x42bξ [4ϕ4 + ϕ̇4] + x4 · 2bϕ4 ,

δh2
δz

x2ϕ2 = x2
3ab2

4
ξ4ϕ2, h4 =

c

16
(bξ2)4 .

After canceling by x4, we obtain the equation

b

2
ξ2 [16ϕ4 + 8ϕ̇4 + ϕ̈4]− 2bξ [4ϕ4 + ϕ̇4] + 2 bϕ4 +

3

4
ab2ξ4ϕ2 +

cb4

16
ξ8 = 0 .

It has the polynomial solution

ϕ4 = a2b3ψ1 + c b3ψ2 ,

where

ψ1 =
1

29

(
−3ξ6 +

15

2
ξ5 − 91

8
ξ4 +

115

2
ξ3 − 115

4
ξ2 +

115

16
ξ

)
,

ψ2 =
1

27

(
−ξ6 + 2 ξ5 − 19

23
ξ4 +

15

23
ξ3 − 15

24
ξ2 +

15

26
ξ

)
.

According to Theorem 2, we have following equations for ϕ6 and ϕ8

δh0
δz

x6ϕ6 + x2
δh2
δz

x4ϕ4 + x2
1

2

δ2h2
δz2

(x2ϕ2)
2 + x4

δh4
δz

x2ϕ2 = 0 ,

δh0
δz

x8ϕ8 + x2
δh2
δz

x6ϕ6 + x2
1

2

δ2h2
δz2

2(x2ϕ2) (x
4ϕ4) + x4

δh4
δz

x4ϕ4+

+
1

2

δ2h4
δz2

(x2ϕ2)
2 = 0 .
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The equations have polynomial solutions for any parameters b 6= 0, a, c, because their
parts, containing variations from h2 and h4, do not contain ξ

2,ξ and ξ0 = 1.

Hypothesis 1 ( [8]). Coefficients ϕ2k(ξ) in expansion (15) of the main complicated

family of solutions to the equation P3 are polynomials in logx, if the parameter of the
equation d = 0.

3.4. Exotic expansions for equation P3. Now and to the end of the Section, we put

ξ = xiγ, γ ∈ R, γ 6= 0. Then

x = ξ1/(iγ), z′ =
iγżξ

x
, z′′ = −γ

2z̈ ξ2 + iγżξ + γ2żξ

x2
.

So the truncated equation (11) takes the form

γ2z(ξ2z̈ + ξż)− γ2ξ2ż2 + bz + d = 0 .

Dividing it by γ2, we obtain equation

h0
def
= z(ξ2z̈ + ξż)− ξ2ż2 + b̃z + d̃ = 0 , (25)

where b̃ = b/γ2, d̃ = d/γ2. In the full (nontruncated) equation h2 = ãz3, h4 = c̃z4,
where ã = a/γ2, c̃ = c/γ2.

Theorem 6. All exotic solutions to equation (25) in the form of Laurent series

z = Aξ +B + Cξ−1 + · · · ,

where A,B,C = const ∈ C are the Laurent polynomials

z = Aξ−1 +B + Cξ−1 = ϕ0 , (26)

and form one family, where

B + b̃ = 0, 4AC − b̃2 + d̃ = 0 . (27)

Proof is based on [1]. Polygon Γ of the truncated equation (25) is the edge

q1 = 0, 0 ≤ q2 ≤ 2. Its upper vertex q1 = 0, q2 = 2 corresponds to the truncated
equation

ĥ0
def
= z(ξ2z̈ + ξż)− ξ2ż2 = 0 . (28)

Its characteristic equation is

k(k − 1) + k − k2 ≡ 0 .
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So equation (28) has power solutions z = Aξλ with any constants A and λ. In

particular, z = Aξ is its solution. We make substitution z = Aξ+u into equation (25).
Then it takes the form

Aξ
(
ξ2ü+ u− ξu̇+ b̃

)
+ u

(
ξ2ü+ ξu̇

)
− ξ2u̇2 + b̃u+ d̃ = 0 . (29)

Support and the polygon of equation (29) are shown in Fig. 6.

1

2

0 1

Γ̃
(1)
1

q1

q2

Figure 6. Support and polygon of equation (29).

It is a quadrangle with the edge Γ̃
(1)
1 with normal P = (1,0), corresponding to

the truncated equation

Aξ(ξ2ü+ u− ξu̇+ b̃) = 0 .

Its power solution u = cξ2 with r = 0 is u = −b̃. After substitution u = −b̃+ w, the
equation (29) takes the form

Aξ(ξ2ẅ − ξẇ + w) + (w − b̃)(ξ2ẅ + ξẇ)− ξ2ẇ2 − b̃2 + b̃w + d̃ = 0 . (30)

Its support and polygon Γ are shown in Fig. 7. Polygon Γ has the edge Γ̃
(1)
2 with the

normal P = (1,− 1), corresponding to the truncated equation

Aξ(ξ2ẅ − ξẇ + w)− b̃2 + d̃ = 0 .

Constant C of its solution w = Cξ(−1) satisfies equation 4AC − b̃2 + d̃ = 0. It is also
a solution of equations w(ξ2ẅ+ ξẇ)− ξ2ẇ2 = 0 and b̃(w− ξ2ẅ− ξẇ) = 0. So that
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1

2

0 1

Γ̃
(1)
2

q1

q2

Figure 7. Support and polygon of equation (30).

solution w = Cξ(−1) is a solution of the equation (30). Hence, (26), (27) are solutions

to equation (25).

Remark 1. Equation (25) is integrable and Theorem 6 follows from Theo-

rem 1 [9], which describes all solutions of equation (25).

Exotic expansion of solutions to the full equation (10) again have the form (15).

Let us find ϕ2(ξ). It is a solution to equation (16). But now according to (25),

δh0
δz

= zξ2
d2

dξ2
+zξ

d

dξ
−2żξ2

d

dξ
+ ξż+ b̃ = zξ2

d2

dξ2
+(z−2żξ)ξ

d

dξ
+ ξż+ b̃ , (31)

δ2h0
δz2

= −ξ2 d
2

dξ2
+ 2ξ

d

dξ
,

δ3h0
δz3

= 0, h2 = ãz3.

According to (26) ξż = Aξ − Cξ−1 , ξ2z̈ = 2Cξ−1. So, applying Corollary 2 to

equation (16) and dividing it by x2, we obtain equation

(Aξ +B + Cξ−1)

[
2

iγ

(
2

iγ
− 1

)
ϕ2 +

4

iγ
ξϕ̇2 + ξ2ϕ̈2

]
+

+ (−Aξ +B + 3Cξ−1)

[
2

iγ
ϕ2 + ξϕ̇2

]
+

+ (Aξ −B + Cξ−1)ϕ2 + ã(Aξ +B + Cξ−1)3 = 0 . (32)

Its support and the polygon are shown in Fig. 8.



– 18 –

−3 1 3
O q1

q2

1

Figure 8. Support and polygon of equation (32).

Cotangents of angles of inclination of left and right edges are equal to±2. Hence,
solution to equation (32) in form of a Laurent polynomial must have powers from −2
to +2, i.e.

ϕ2 = Dξ2 + Eξ + F +Gξ−1 +Hξ−2 , (33)

where D,E,F,G,H — are constants. Then

ξϕ̇2 = 2Dξ2 + Eξ −Gξ−1 − 2Hξ−2 ,

ξ2ϕ̈2 = 2Dξ2 + 2Gξ−1 + 6Hξ−2 .

Note that

ϕ3
0 = (Aξ +B + Cξ−1)3 = A3ξ3 + 3A2Bξ2 + 3(AB2 + A2C)ξ +B3 + 6ABC+

+3(AC2 +B2C)ξ−1 + 3BC2ξ−2 + C3ξ−3 .

We substitute these expressions into equation (32) and nullity coefficients near ξ3,ξ2,
ξ,ξ0,ξ−1,ξ−2,ξ−3. Then we obtain a system of 7 linear algebraic equations for 5

coefficients D,E, F,G,H . It has the unique solution

D =
ãA2γ2

(2 + iγ)2
, E =

ãABγ2

2 + iγ
, F =

ãB2γ2

4 + γ2
+ ãAC

(8 + 6γ2)γ2

(4 + γ2)2
, (34)

G =
ãBCγ2

2− iγ
, H =

ãC2γ2

(2− iγ)2
.

According to Theorem 2, we have for ϕ4 the equation

δh0
δz

x4ϕ4 +
1

2

δ2h0
δz2

(x2ϕ2)
2 + x2

δh2
δz

x2ϕ2 + x4h4(ϕ0) = 0 , (35)

Let us consider it in the case a = 0. Then according to (33), (34) ϕ2 = 0 and
equation (35) is

δh0
δz

x4ϕ4 + x4h4 = 0 , (36)
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where
δh0
δz

is in (31), h4 = c̃z4, z = ϕ0 = Aξ + B + Cξ−1. Using in equation (36)

Corollary 2 and dividing it by x4, we obtain equation

(Aξ +B + Cξ−1)

[
4

iγ

(
4

iγ
− 1

)
ϕ4 +

8

iγ
ξϕ̇4 + ξ2ϕ̈4

]
+

+ (−Aξ +B + 3Cξ−1)

[
4

iγ
ϕ4 + ξϕ̇4

]
+

+ (Aξ −B + Cξ−1)ϕ4 + c̃(Aξ +B + Cξ−1)4 = 0 . (37)

Its support and the Newton polygon are shown in Fig. 9.

−4 1 4
O q1

q2

1

Figure 9. Support and polygon of equation (37).

Inclinations of its side edges are ±3. Hence, solution to equation (37) in the
form of Laurent polynomial must have powers of ξ from −3 up to +3.

ϕ4 = Iξ3 + Jξ2 +Kξ + L+Mξ−1 +Nξ−2 +Oξ−3 . (38)

Then
ξϕ̇4 = 3Iξ3 + 2Jξ2 +Kξ −Mξ−1 − 2Nξ−2 − 3Oξ−3 ,
ξ2ϕ̈4 = 6Iξ3 + 2Jξ2 + 2Mξ−1 + 6Nξ−2 + 12Oξ−3 .

Besides,

(Aξ +B + Cξ−1)4 = A4ξ4 + 4A3Bξ3 + (6A2B2 + 4A3C)ξ2+

+ (4AB3 + 12A2BC)ξ +B4 + 6A2C2 + 12AB2C + (4B3C + 12ABC2)ξ−1+

+ (6B2C2 + 4AC3)ξ−2 + 4BC3ξ−3 + C4ξ−4 .

Substituting these expressions in equation (37) and nullifying coefficients near ξ4,ξ3,ξ2,ξ,ξ0,ξ−1,ξ−2,ξ−3,ξ−4,

we obtain a system of 9 algebraic equations for 7 coefficients I,J,K,L,M,N,O. The
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system has solution

I =
c̃A3γ2

4(2 + iγ)2
, J =

2c̃A2Bγ2(3 + iγ)

(2 + iγ)(4 + iγ)2
,

K =
c̃AB2γ2(12 + 5iγ)

8(2 + iγ)(4 + iγ)
+
c̃A2Cγ2(3 + 2iγ)

4(2 + iγ)2
,

L =
c̃B3γ2

16 + γ2
+

2c̃ABC(48 + 5γ2)

(16 + γ2)2
,

M =
c̃B2Cγ2(12− 5iγ)

8(2− iγ)(4− iγ)
+
c̃AC2γ2(3− 2iγ)

4(2− iγ)2
,

N =
2c̃BC2γ2(3− iγ)

(2− iγ)(4− iγ)2
, O =

c̃C3γ2

4(2− iγ)2
.

(39)

Thus, we have proven

Theorem 7. In the exotic expansions (15) of solutions to equation P3, the second

coefficient ϕ2(ξ) is always the Laurent polynomial (33), (34), but the third coefficient

ϕ4 is a Laurent polynomial (38), (39), if the parameter a = 0.

The case a 6= 0, c = 0 should be studied separately, using equation (35).

4. The fifth Painlevé equation P5 in Case I

4.1. Two cases for equation P5. The fifth Painlevé equation P5 is

y′′ =

(
1

2y
+

1

y − 1

)
y′ 2 − y′

x
+

(y − 1)2

x2

(
ay +

b

y

)
+
cy

x
+
dy(y + 1)

y − 1
, (40)

where a,b,c,d are complex parameters, x and y are independent and dependent vari-
ables, y′ = dy/dx [5]. To write equation (40) as a differential sum, multiply it by

x2y(y − 1) and carry all terms into right side. We obtain the equation

− x2y(y − 1)y′′ + x2(3y − 1)y′ 2/2− xy(y − 1)x′ + (y − 1)3(ay2 + b)−
− cxy2(y − 1) + dx2y2(y + 1)2 = 0 . (41)

Its support and polygon are shown in Fig. 10.

After substitution y = 1 + z into equation (41), we obtain equation

− x2zz′′(z + 1) + x2z′ 2
(
3

2
z + 1

)
− xzz′(z + 1) + az3(z + 1)2 + bz3+

+ cxz(z + 1)2 + dx2(z + 1)2(2 + z) = 0 . (42)

Its support and polygon are shown in Fig. 11.
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q2

q10 1

1

Figure 10. Support and polygon of equation (41).

q2

q1

Γ
(1)
1

Γ
(1)
2

0 1

1

Figure 11. Support and polygon of equation (42).

We will differ two cases with different truncated equations:

Case I. Truncated equation corresponds to the low inclined edge Γ
(1)
1 in Fig. 11.

It is

−z(z′′x2 + z′x) + x2z/2 + cxz + 2d = 0

and is similar to the truncated equation (9) of equation P3.

Case II. Truncated equation corresponds to the left vertical edge Γ
(1)
2 in Fig. 11.
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4.2. Preliminary transformations in Case I. To transform the edge Γ
(1)
1 in vertical

one, we make the power transformation z = xv. Then z′ = v + xv′, z′′ = 2v′ + xv′′

and equation (42) divided by x2 takes the form

g(x,v)
def
= − x2vv′′(1 + xv) + x2v′ 2

(
1 +

3

2
xv

)
− xv′v +

1

2
xv3+

+ a(xv3 + 2x2v4 + x3v5) + bxv3 + c(v + 2xv2 + x2v3)+

+ d(2 + 5xv + 4x2v2 + x3v3) = 0 .

(43)

Its support and polygon are shown in Fig. 12.

q2

q10 1 3

1

3

5

Figure 12. Support and polygon of equation (43).

If according to Section 2 to write

g(x,v) = g0(x,v) + xg1(x,v) + x2g2(x,v) + x3g3(x,v) ,

then

g0(x,v) = −x2vv′′ + x2v′ 2 − xv′v + cv + 2d ,

g1(x,v) = −x2v2v′′ + 3

2
x2vv′ 2 +

(
1
2 + a+ b

)
v3 + 2cv2 + 5dv ,

g2(x,v) = 2av4 + cv3 + 4dv2 , g3(x,v) = av5 + dv3 .

(44)

Complicated and exotic expansions of solutions to equation (43) have the form

v = ϕ0(ξ) + xϕ1(ξ) + x2ϕ2(ξ) + · · · , (45)
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where ξ = logx+ c0, c0 is arbitrary constant. According to Theorem 2, equation for

the second coefficient ϕ1 is

δg0
δv

(xϕ1) + xg1(ϕ0) = 0 . (46)

4.3. Complicated expansions. In gj(x,v) from (44), we change the independent

variable x by ξ = logx+ c0, where c0 is arbitrary constant. We obtain

g∗0(ξ,v) =g0(x,v) = −vv̈ + v̇2 + cv + 2d ,

g∗1(ξ,v) =g1(x,v) = −v2(v̈ − v̇) +
3

2
vv̇2 + ωv3 + 2cv2 + 5dv ,

g∗2(ξ,v) =g2(x,v) = 2av4 + cv3 + 4dv2 , g∗3(ξ,v) = g3(x,v) = av5 + dv3 ,

(47)

where ω =
1

2
+ a+ b.

According to Theorem 3, solutions v = ϕ0(ξ) to equation g0(ξ,v) = 0, which
are the Laurent series in decreasing powers of ξ, form two families:

additional: ϕ0 = v = βξ for c = 0, β2 = −2d, d 6= 0, and

main: ϕ0 = v = −c
2
ξ2 − d

c
for c 6= 0.

According to (47)

δg∗0
δv

= −v d
2

dξ2
+ 2v̇

d

dξ
+ c− v̈ .

According to Corollary 1

d

dξ
(xϕ1) = x[ϕ1 + ϕ̇1],

d2

dξ2
(xϕ1) = x[ϕ1 + 2ϕ̇1 + ϕ̈1] .

First we consider the additional family. Then

δg∗0
δv

= −βξ d
2

dξ2
+ 2β

d

dξ
, g1 = ωβ3ξ3 + β3ξ2 +

(
3

2
β3 + 5dβ

)
ξ

and equation (46) after dividing by x and using 2d = −β2 takes the form

−βξ[ϕ1 + 2ϕ̇1 + ϕ̈1] + 2β[ϕ1 + ϕ̇1] + ωβ3ξ3 + β3ξ2 − β3ξ = 0 .

It has the polynomial solution

ϕ1 = −2ωd(ξ2 − 2ξ + 2)− 2dξ + 2d . (48)
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Now we consider the main family. Then

δg∗0
δv

=

(
c

2
ξ2 +

d

c

)
d2

dξ2
− 2cξ

d

dξ
+ 2c ,

g∗1 = ωv3 − cξv2 + cv2 +
3

2
c2ξ2v + 2cv2 + 5dv = ωv3 − cξv2 + 2dv .

Equation (46) after division by x is(
c

2
ξ2 +

d

c

)
[ϕ1+2ϕ̇1+ ϕ̈1]− 2cξ[ϕ1+ ϕ̇1] + 2cϕ1+ωv3− cξv2+2dv = 0 . (49)

At first we consider auxiliary equation(
c

2
ξ2 +

d

c

)
[ϕ1 + 2ϕ̇1 + ϕ̈1]− 2cξ[ϕ1 + ϕ̇1] + 2cϕ1 + ωv3 = 0 .

It has the polynomial solution

ϕ1 = −ωc
2

4
[ξ4 − 4ξ3 + (8 + 2λ)ξ2 − (8 + 4λ)ξ + λ2] ,

where λ =
2d

c2
.

Now we consider equation (49) with ω = 0. We divide the equation by c/2 and
put ϕ1 = c2ψ1/2. Then the equation (49) takes the form

(ξ2+λ)[ψ1+2ψ̇1+ ψ̈1]− 4ξ[ψ1+ ψ̇1] + 4ψ1− ξ(ξ2+λ)2+2λ(ξ2+λ) = 0 . (50)

Its support and polygon are shown in Fig. 13.

−2 1 5
O q1

q2

1

Figure 13. Support and polygon of equation (50).

As the inclination of the right edge is equal −3, then its solution in decreasing
powers of ξ begins from ξ3. So we look for its polynomial solution

ψ = ξ3 +Bξ2 + Cξ +D .
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We substitute that expression in equation (50) and nullify coefficients for ξ5, ξ4, ξ3,
ξ2, ξ1, ξ0. We obtain six linear algebraic equations for three coefficients B,C,D.
Subsystem of first 4 equations for ξ5,ξ4,ξ3,ξ2 is triangle and has solution

B = −2, C = 2 + λ, D = −4λ.

Substitute there values in equation for ξ and ξ0, we obtain equations 16λ = 0 and
−16λ = 0. Hence, λ = 0, i.e. d = 0. Thus, equation (50) has a polynomial solution
only for d = λ = 0, and the solution is

ψ1 = ξ3 − 2ξ2 + 2ξ .

Hence, the equation (50) has a polynomial solution only if d = 0, and the solution is

ϕ1 = −ωc
2

4
[ξ4 − 4ξ3 + 8ξ2 − 8ξ] +

c2

2
[ξ3 − 2ξ2 + 2ξ] . (51)

Theorem 8. For the equation P5 in Case I, the second coefficientϕ1(ξ) in complicated
expansions (45) of its solutions is polynomial (48) for the additional family always

and (51) for the main family iff d = 0.

4.4. Exotic expansions. We introduce new independent variable

ξ = xiγ, γ ∈ R, γ 6= 0 . (52)

Then

v′ = iγv̇
ξ

x
, v′′ = v̈

(
iγ
ξ

x

)2

+ v̇(iγ)2
ξ

x2
− v̇iγ

ξ

x2
, (53)

where v̇ = dv/dξ. Then

xv′ = iγξv̇ ,

x2v′′ = −γ2ξ2v̈ − γ2ξv̇ − iγξv̇ .
(54)

Hence, formulas (44) give

g0 = γ2v(ξ2v̈ + ξv̇)− γ2ξ2v̇2 + cv + 2d ,

g1 = v2(γ2ξ2v̈ + γ2ξv̇ + iγv̇)− 3

2
γ2ξ2v̇2 + ωv3 + 2cv2 + 5dv .

We put

g̃0 = g0/γ
2, g̃1 = g1/γ

2, ω̃ = ω/γ2, c̃ = c/γ2, d̃ = d/γ2 .
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Then these formulas give

g̃0 = v(ξ2v̈ + ξv̇)− ξ2v̇2 + c̃v + 2d̃ ,

g̃1 = v2
[
ξ2v̈ + ξv̇

(
1− 1

iγ

)]
− 3

2
vξ2v̇2 + ω̃v3 + 2c̃v2 + 5d̃v .

(55)

From the first formulae (55) we have

δg̃0
δv

= vξ2
d2

dξ2
+ (v − 2v̇ξ)ξ

d

dξ
+ c̃+ ξ2v̈ + ξv̇ .

According to Theorem 6, all solutions to equation g̃0 = 0 in the form of Laurent

series form one family of solutions

ϕ0 = v = Aξ +B + Cξ−1 ,

with following connections

B = −c̃, 4AC = c̃2 − 2d̃ .

As

v − 2v̇ξ = −Aξ +B + 3Cξ−1, c̃+ ξ2v̈ + ξv̇ = Aξ −B + Cξ−1 ,

g̃1 = ω̃v3 + v2
[
v̈ξ2 + v̇ξ

(
1− 1

iγ

)]
− 3

2
vξ2v̇2 + 2c̃v2 + 5d̃v =

= ω̃
[
A3ξ3 + 3A2Bξ2 + 3(AB2 + A2C)ξ +B3 + 6ABC + 3(AC2 +B2C)ξ−1+

+3BC2ξ−2 + C3ξ−3
]
− A32 + iγ

2iγ
ξ3 − A2B

4 + 3iγ

2iγ
ξ2+

+

(
−A2C

2 + 11iγ

2iγ
− AB22 + iγ

2iγ

)
ξ +

1

2
B3 − 7ABC+

+

(
AC22− 11iγ

2iγ
+B2C

2− iγ

2iγ

)
ξ−1 +BC24− 3iγ

2iγ
ξ−2 + C32− iγ

2iγ
ξ−3 ,

then equation for ϕ1(ξ) is

(Aξ +B + Cξ−1)

[
1

iγ

(
1

iγ
− 1

)
ϕ1 +

2

iγ
ξϕ̇1 + ξ2ϕ̈1

]
+

+(−Aξ +B + 3Cξ−1)

[
1

iγ
ϕ1 + ξϕ̇1

]
+ (Aξ −B + Cξ−1)ϕ1 + g̃1 = 0 .
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Its solution is the Laurent polynomial

ϕ1(ξ) =ω̃γ
2

[
A2

(1 + iγ)2
ξ2 +

2AB

1 + iγ
ξ +

B2

1 + γ2
+
AC(2 + 6γ2)

(1 + γ2)2
+

2BC

1− iγ
ξ−1 +

C2

(1− iγ)2
ξ−2

]
+

+ γ2
[
− A2(2 + iγ)

2iγ(1 + iγ)2
ξ2 − AB

iγ(1 + iγ)
ξ +

B2

2(1 + γ2)
−

AC(1− γ2)

(1 + γ2)2
+

BC

iγ(1− iγ)
ξ−1 +

C2(2− iγ)

2iγ(1− iγ)2
ξ−2

]
.

(56)

So, we have proved

Theorem 9. In exotic expansion (45) solutions to equation P5 in Case I, coefficient

ϕ1(ξ) is the Laurent polynomial (56).

5. The fifth Painlevé equation P5 in Case II

5.1. Preliminary transformations. To obtain polynomial ϕ0, we make in equa-

tion (42) the power transformation z =
1

w
. Then

z′ = −w′

w2
, z′′ =

2w′ 2 − ww′′

w3
,

and equation (42), multiplied by x5, takes the form

h(x,w)
def
= x2ww′′(1 + w)− x2w′ 2

(
1

2
+ w

)
+ xww′(1 + w) + a(1 + w)2+

+bw2 + cxw2(w + 1)2 + dx2w2(w + 1)2(1 + 2w) = 0 .
(57)

Its support and polygon are shown in Fig. 14. If write

h(x,w) = h0(x,w) + xh1(x,w) + x2h2(x,w) ,

then

h0(x,w) =x
2ww′′(w + 1)− x2w′ 2

(
w +

1

2

)
+ xww′(w + 1)+

+ a(w + 1)2 + bw2 ,

h1(x,w) =cw
2(1 + w)2 ,

h2(x,w) =dw
2(w + 1)2(2w + 1) .

(58)

Now formulas (45) and (46) are again correct if we put w instead of v.
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Figure 14. Support and polygon of equation (57).

5.2. Complicated expansions. In hj(x,w) from (58), we change the independent

variable x by ξ = logx+ c0. We obtain

h∗0(ξ,w) = h0(x,w) = ẅw(w + 1)− ẇ2

(
w +

1

2

)
+ a(w + 1)2 + bw2 ,

h∗1(ξ,w) = h1(x,w) = cw2(w + 1)2 ,
h∗2(ξ,w) = h2(x,w) = dw2(w + 1)(2w + 1) .

(59)

Let us find all solutions of equation h∗0(ξ,w) = 0 in the form of Laurent series.

Theorem 10. All solutions w = ϕ0(ξ) of equation h
∗
0(ξ,w) = 0 from (59) in the form

of Laurent series and different from constant form two families:

main (if a+ b
def
= α 6= 0)

w = ϕ0 =
a+ b

2
(ξ + c0)

2 − a

a+ b
=
α

2
(ξ + c0)

2 − a

α
, (60)

and additional (if α = 0, a 6= 0)

w = ϕ0 = β (ξ + c0) , β2 = 2a . (61)

Here c0 is arbitrary constant.

Proof. We will consider 3 cases: 1)α 6= 0; 2)α = 0, a 6= 0; 3)α = a = 0.
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Figure 15. Support and polygon of equation h∗0(ξ,w) = 0.

Case 1) α 6= 0. Support and polygon Γ of equation h∗0(ξ,w) = 0 are shown in
Fig. 15.

Right side of the boundary ∂Γ̃ of the polygon Γ̃ consists of three vertices Γ̃
(0)
1 =

(−2,3), Γ̃
(0)
2 = (0,2), Γ̃

(0)
3 = 0 and two edges Γ̃

(1)
1 and Γ̃

(1)
2 . Corresponding truncations

are

ĥ
∗(0)
1 = ẅw2 − ẇ2w, ĥ

∗(0)
2 = αw2, ĥ

∗(0)
3 = a,

ĥ
∗(1)
1 = ẅw2 − ẇ2w + αw2, ĥ

∗(2)
2 = a(w + 1)2 + bw2 .

Characteristic equation for truncation ĥ
∗(0)
1 is −r = 0. It has unique solution r = 0.

But vector (1,0) does not belong to the normal cone

U
(0)
1 = {P = λ1(0,1) + λ2(1,2), λ1,λ2 ≥ 0, λ1 + λ2 > 0}

Truncations ĥ
∗(0)
2 and ĥ

∗(0)
3 have trivial characteristic equationsα = 0 and a = 0, which

have no solutions. Truncated equation ĥ
∗(1)
1 = 0 has the power solution w = αξ2/2.

According to Subsection 3.3 of [11], we will find critical numbers of that solution.

We have
δĥ

∗(1)
1

δw
= w2 d

2

dξ2
− 2ẇw

d

dξ
+ 2ẅw − ẇ2 + 2αw .

On the curve w = αξ2/2, that variation gives operator

L(ξ) = α2ξ4

4

d2

dξ2
− α2 d

dξ
+ α2ξ2 − α2ξ2 + α2ξ2 .
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Characteristic polynomial of sum L(ξ)ξk is

ν(k) =
α2

4
[k(k − 1)− 4k + 4] .

It has two roots k1 = 1 and k2 = 4. But k1 < 2, and k2 > 2 and it is not a critical
number. So we have only one critical number k1 = 1.

According to Subsection 3.4 of [11], the set

K
(1)
1 = {2− 2l, l ∈ N} = {0,− 2,− 4, · · · } .

Now the critical number k1 = 1 does not belong to the set K
(1)
1 . Thus, according to

Theorem 3 [11], equation h∗0(ξ,w) = 0 has a solution in the form of Laurent series

w = αξ2/2 + γ0 +
∞∑
k=1

γ2ξ
−2k , (62)

where γi = const. To find γ0, we put w = αξ2/2 + γ0 into h
∗
0(ξ,w). We have

ẇ = αξ, ẅ = α, hence,

h∗0(ξ,αξ
2/2 + γ0) = α(αγ0 + a)ξ2 + (2γ0 + 1) (αγ0 + a) .

Both coefficients near ξ2 and ξ0 are zero, iff γ0 = −a/α. So, solution (62) is indeed
the polynomial

w = αξ2/2− a/α.

Equation h∗0(ξ,w) = 0 does not contain explicitly the independent variable ξ, so to
its solution w(ξ) there correspond solutions w(ξ + c0), where c0 is arbitrary constant.
Hence, we obtain family (60).

To finish that case, we must consider the last truncation ĥ
∗(1)
2 . It is the square

polynomial (a+ b)ξ2 + 2aξ + a2. Its discriminant

∆ = −4ab .

If ∆ 6= 0, then the polynomial has two roots. Each of them is the constant

solution of the equation h∗0(ξ,w) = 0 and cannot be continued into power expansion.
If∆ = 0, i.e. a = 0 or b = 0, then the polynomial has one double solutionw = 0

or w = −1. They are constant double solutions of the full equation h∗0(ξ,w) = 0 , and
does not give nonconstant solutions to equation h∗0(ξ,w) = 0 . But we are looking for
nonconstant solutions.

Case 2) α = 0,a 6= 0. Support and polygon Γ̃ of h∗0(ξ,w) are shown in Fig.16.

Right side of the boundary ∂Γ̃ of the polygon Γ̃ consists of three vertices Γ̃
(0)
1 = (−2,3),
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Figure 16. Support and polygon of equation h∗0(ξ,w) = 0 in case 2).

Γ̃
(0)
2 = (0,1), Γ̃

(0)
3 = 0 and two edges Γ̃

(1)
1 and Γ̃

(1)
2 . As in case 1), truncated equations,

corresponding to all vertices and edge Γ̃
(1)
2 do not give us power expansions of solutions

to equation h∗0(ξ,w) = 0. So we consider the truncated equation

ĥ
∗(1)
1

def
= ẅw2 − ẇ2w + 2aw = 0 .

It has power solutions w = βξ with β2 = 2a. The solution satisfies the equation

h∗0(ξ,w)− ĥ
∗(1)
1 (ξ,w)

def
= ẅw − ẇ2/2 + a = 0 .

Hence, the equation has family of solutions (61).

Case 3) a = b = 0. Here all solutions of equation h∗0(ξ,w) = 0 belong to

two-parameter family w =
[c2 exp(c1ξ)− 1]2

4c2 exp(c1ξ)
, where c1 and c2 are arbitrary constants.

No one of these solutions has a power expansion. �
Here

δh∗0
∂w

= w(w + 1)
d2

dξ2
− 2

(
w +

1

2

)
ẇ
d

dξ
+ 2a(w + 1) + 2bw + ẅ(2w + 1)− ẇ2 .

Let us compute solution ϕ1 to equation (46) for additional family (61). Here ẇ =
β, ẅ = 0, ẇ2 = 2a and equation (46) divided by x is

βξ(βξ + 1) [ϕ1 + 2ϕ̇1 + ϕ̈1]− β(2βξ + 1) [ϕ1 + ϕ̇1] + cβ2ξ2(βξ + 1)2 = 0 .

It has polynomial solution

ϕ1 = cβ[−βξ2 + (2β − 1)ξ + 1] . (63)
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For the main family (60), equation (46) divided by x is

w(w+1) [ϕ1 + 2ϕ̇1 + ϕ̈1]−αξ(2w+1) [ϕ1 + ϕ̇1]+α(2w+1)ϕ1+cw
2(w+1)2 = 0 ,

where w =
α

2
ξ2 − a

α
. It has the polynomial solution

ϕ1(ξ) = −c
[
α2

4
ξ4 − α2ξ3 +

(
2α2 +

α

2
− a

)
ξ2−

−
(
2α2 + α− 2a

)
ξ +

a(a− α)

α2

]
. (64)

Thus, we have proven

Theorem 11. In Case II of equation P5 the second coefficient ϕ1 of complicated

expansions (45) is a polynomial (63) for the additional family and polynomial (64)

for the main family.

5.3. Exotic expansions. Let us introduce new independent variable ξ = xiγ ac-
cording to (52). Then, according to (53), formulas (58), divided by γ2, take the
forms

h̃0(ξ,w) =γ
−2h0(x,w) = −w(w + 1)(ξ2ẅ + ξẇ) +

(
w +

1

2

)
ξ2ẇ2+

+ ã(w + 1)2 + b̃w2 ,

h̃1(ξ,w) =γ
−2h1(x,w) = c̃w2(w + 1)2 ,

(65)

where ã = a/γ2, b̃ = b/γ2, c̃ = c/γ2.

Theorem 12. All solutions w = ϕ0(ξ) to equation h̃0(ξ,w) = 0 from (65) in the form

of Laurent series form one family

w = ϕ0 = Aξ +B + Cξ−1 , (66)

where parameters are connected by equalities

B = ã+ b̃− 1

2
, 4AC = (ã+ b̃)2 + ã− b̃+

1

4
. (67)

Proof. First we will show that parameters satisfy to (67) for solution (66) to

equation h̃0(ξ,w) = 0. Let us denote

α = Aξ + Cξ−1 and β = Aξ − Cξ−1 .
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Then ξẇ = Aξ − Cξ−1, ξ2ẅ = 2Cξ−1 and ξẇ + ξ2ẅ = α. So

h̃0(ξ,w) = −(α+B)(α+B+1)α+(α+B+
1

2
)β2+ ã(α+B+1)2+ b̃(α+B)2 =

= −α3+αβ2−α2(2B+1)+(B+
1

2
)β2+ ãα2+ b̃α2−B(B+1)α+2ã(B+1)α+

+2b̃Bα + ã(B + 1)2 + b̃B2 = α[β2 − α2] + α2[ã+ b̃− (2B + 1)] + (B +
1

2
)β2+

+α[2ã(B + 1) + 2b̃B −B(B + 1)] + ã(B + 1)2 + b̃B2 .

We have

β2 − α2 = (β − α)(β + α) = 2Aξ(−2Cξ−1) = −4AC .

Hence, β2 = α2 − 4AC and

h̃0(ξ,w) = −4ACα + α2[ã+ b̃− (2B + 1) +B +
1

2
]− 4AC(B +

1

2
)+

+α[2ã(B + 1) + 2b̃B −B(B + 1)] + ã(B + 1)2 + b̃B2 = α2[ã+ b̃−B − 1

2
]+

+α[2ã(B + 1) + 2b̃B −B(B + 1)− 4AC] + ã(B + 1)2 + b̃B2 − 4AC(B +
1

2
) .

But α2 = A2ξ2 + 2AC + C2ξ−2, hence,

h̃0(ξ,w) = (A2ξ2+C2ξ−2)(ã+ b̃−B− 1

2
)+α[2ã(B+1)+2b̃B−B(B+1)−4AC]+

+ã(B + 1)2 + b̃B2 − 4AC(B +
1

2
) + 2AC(ã+ b̃−B − 1

2
) ≡ 0 .

It means that coefficients for ξ±2, α and ξ0 are zero. Exactly ã+ b̃−B − 1
2 = 0, i.e.

ã+ b̃ = B +
1

2
; (68)

0 = 2ã(B + 1) + 2b̃B −B2 −B − 4AC = 2(B +
1

2
)B + 2ã−B2 −B − 4AC =

= B2 + 2ã− 4AC

according to (68), i.e.

4AC = B2 + 2ã . (69)

Finally,

ã(B + 1)2 + b̃B2 − 4AC(B +
1

2
) = (ã+ b̃)B2 + 2ãB + ã− 4AC(B +

1

2
) =
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= (ã+ b̃)[B2 + 2ã− 4AC] = 0

according to (68) and (69).

Now we will show that, for any solution

w = Aξ1 +B + Cξ−1 +Dξ−l + . . . , l ≥ 2 (70)

to equation h̃0(ξ,w) = 0, coefficient D = 0. We insert (70) in h̃0(ξ,w) and find in it
a term with maximal power ξ, containing D. Terms of the third order in h̃0(ξ,w) are

−w2(ξ2ẅ + ξẇ) + wξ2ẇ2 def
= Ω3 .

We assume that w = Aξ +Dξ−l, then ξ2ẅ + ξẇ = Aξ + l2Dξ−l and

Ω3 = −(A+Dξ−l)2(Aξ + l2Dξ−l) + (Aξ +Dξ−l)(Aξ − lDξ−l)2 =

= −(l + 1)2A2Dξ2−l + . . .

Coefficient before the ξ2−l must be zero. But (l + 1)2 6= 0, A2 6= 0, hence D = 0. �
According to (65)

δh̃0
δw

= −w(w + 1)ξ2
d2

dξ2
− w(w + 1)ξ

d

dξ
+ 2

(
w +

1

2

)
ẇξ2

d

dξ
+

+2ã(w + 1) + 2b̃w − (2w + 1)
(
ξ2ẅ + ξẇ

)
+ ξ2ẇ2 .

Equation (46) for ϕ1(ξ) is

a1

[
1

iγ

(
1

iγ
− 1

)
ϕ1 +

2

iγ
ξϕ̇1 + ξ2ϕ̈1

]
+ a2

[
1

iγ
ϕ1 + ξϕ̇1

]
+ a3ϕ1+ h̃1 = 0 , (71)

where

a1 =− w(w + 1) = −A2ξ2 − A(2B + 1)ξ − 2AC −B(B + 1)−
− (2B + 1)Cξ−1 − C2ξ−2 ,

a2 =(2w + 1)ẇξ − w(w + 1) = A2ξ2 − [2AC +B(B + 1)]− 2(2B + 1)Cξ−1−
− 3C2ξ−2 ,

a3 =2ã(w + 1) + 2b̃w − (2w + 1)(ξ2ẅ + ξẇ) + ξ2ẇ2 = −A2ξ2 − 2AC+

+B(B + 1)− C2ξ−2 ,

h̃1
c̃

=w2(w + 1)2 = A4ξ4 + 2A3(2B + 1)ξ3 + [4A3C + A2β]ξ2+

+ [6A2(2B + 1)C + 2AB(B + 1)(2B + 1)]ξ + 6A2C2 + 2AβC+

+B2(B + 1)2 + [6A(2B + 1)C2 + 2B(B + 1)(2B + 1)C]ξ−1+

+ [4AC3 + βC2]ξ−2 + 2(2B + 1)C3ξ−3 + C4ξ−4 def
= h̃15 ,

β =6B(B + 1) + 1.



– 35 –

Support and the Newton polygon Γ for equation (69) are shown in Fig. 17. As
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O q1
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1

Figure 17. Support and polygon of equation (69).

inclinations of side edges of the polygon Γ are ±2, then polynomial solutions to
equation (71) should be as

ϕ1 = Dξ2 + Eξ + F +Gξ−1 +Hξ−2 . (72)

Inserting that ϕ1 into equation (71), we obtain a linear system of 9 algebraic equations

for 5 coefficients D,E,F,G,H . Equations correspond to vanish of coefficients near

ξ4, ξ3, ξ2, ξ, ξ0, ξ−1, ξ−2, ξ−3, ξ−4. From coefficients near ξ4, ξ3, ξ2, we find

D
def
= D1 = −c A2

(1 + iγ)2
, E

def
= E1 = −cA(2B + 1)

1 + iγ
,

F
def
= F1 = −c2AC(1− γ2)

(1 + γ2)2
− c

B(B + 1)(1− 3γ2)

(1 + γ2)2
.

(73)

From coefficients near ξ−2, ξ−3, ξ−4, we find

H = H2 =− c
C2

(1− iγ)2
, G = G2 = −c(2B + 1)C

1− iγ
,

F = F2 =− c
2AC(1 + 7γ2)

(1 + γ2)2
− c

B(B + 1)(1 + 5γ2)

(1 + γ2)2
.

(74)

According to (73) and (74), equality F1 = F2 is possible, iff

2AC +B(B + 1) = 0 . (75)

Then

F = −c 4ACγ2

(1 + γ2)2
= c

2B(B + 1)γ2

(1 + γ2)2
. (76)

Inserting found values (73), (74), (76) of coefficientsD,E,F,G,H into equations near

ξ and ξ−1, we obtain, that for A(2B + 1)C 6= 0 they are fulfilled, if γ4 = 1, i.e.
γ2 = ±1. As γ2 > 0, it means that γ2 = 1. We have obtain the second condition

A(2B + 1)C(γ2 − 1) = 0 . (77)
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Equation near ξ0 is satisfied under substitution of find coefficients and condition (77).
Thus, we have proven

Theorem 13. In the exotic expansion (45) of solutions to equation P5 in Case II, the

second coefficient ϕ1(ξ) is a Laurent polynomial (72), (73), (74), (76), iff 2 condi-

tions (75) and (77) are fulfilled.

6. The sixth Painlevé equation P6

6.1. Preliminary transformations. Usually the sixth Painlevé equation [6] is

y′′ =
y′2

2

(
1

y
+

1

y − 1
+

1

y − x

)
− y′

(
1

x
+

1

x− 1
+

1

y − x

)
+

+a
y(y − 1)(y − x)

x2(x− 1)2
+b

(y − 1)(y − x)

x(x− 1)2y
+c

y(y − x)

x2(x− 1)(y − 1)
+d

y(y − 1)

x2(x− 1)2(y − x)
.

We put z = −y, multiply the equation by its common denominator x2(x− 1)2y(y −
1)(y − x) and translate all terms into the right side of equation. So we obtain the
equation

g(x,z)
def
= −z′′x2(x− 1)2z(z + 1)(z + x)+

+
1

2
z′2x2(x− 1)2[(z + 1)(z + x) + z(z + x) + z(z + 1)]−

− z′z(z + 1)[x(x− 1)2(z + x) + x2(x− 1)(z + x) + x2(x− 1)(z + x)− x2(x− 1)2]+

+ az2(z + 1)2(z + x)2 + bx(z + 1)2(z + x)2 + c(x− 1)z2(z − x)2+

+ dx(x− 1)2z2(z + 1)2 = 0 .
(78)

Support and polygon of the equation are shown in Fig. 18.

If we write

g(x,z) = g0(x,z) + xg1(x,z) + x2g2(x,z) + x3g3(x,z)
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Figure 18. Support and polygon of equation (78).

according to Subsection 2.2, then

g0(x,z) =− z′′x2z2(z + 1) + z′2x2z

(
3

2
z + 1

)
− z′xz2(z + 1) + az4(z + 1)2 − cz4 ,

g1(x,z) =z
′′x2(z + 1)(2z − 1)− z′2x2z

(
3z2 + z − 1

2

)
+ 3z′xz2(z + 1)+

+ 2az3(z + 1)2 + bz2(z + 1)2 + cz3(z − 2)− dz2(z + 1)2 ,

g2(x,z) =− z′′x2z(z + 1)(z − 2) + z′2x2(3z2 − 2z − 2)− z′xz(z + 1)(2z − 1)−
− az2(z + 1)2 − bz(z − 1)2 − cz2(2z − 1)− dz2(z + 1)2 ,

g3(x,z) =− 2z′′x2z(z + 1) + z′2x2(2z + 1)− z′xz(z + 1) + b(z + 1)2 − cz2 .

Note, that g0(x,z) coincides with the upper line of formula (42), multiplied by z, if

−c change by b. Now in equation (78) we make the power transformation z =
1

w
.

Then

z′ = −w′

w2
, z′′ =

2w′ 2 − ww′′

w3
,
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Denote hi(x,w) = gi

(
x,

1

w

)
·w6, i = 0,1,2,3. Then

h0(x,w) =ww
′′x2(1 + w)− w′2x2

(
w +

1

2

)
+ w′xw(w + 1) + a(w + 1)2 − cw2 ,

h1(x,w) =ww
′′x2(w + 1)(w − 2) + w′2x2

(
−3

2
w2 + w + 1

)
− 3w′xw(w + 1)+

+ 2aw(w + 1)2 + cw2(1− 2w) + (b− d)w2(w + 1)2 .
(79)

After change−c by b, h0(x,w) coincides with h0(x,w) from (58), but in h1(x,w) here
only one term (b − d)w2(w + 1)2 coincides with h1(x,w) in (58), but now h1 has
several other terms.

6.2. Complicated expansions. In hi(x,w) from (79), we change independent vari-

able ξ = logx+ c0 and obtain

h∗0(ξ,w) =h0(x,w) = ẅw(w + 1)− ẇ2

(
w +

1

2

)
+ a(w + 1)2 − cw2 ,

h∗1(ξ,w) =h1(x,w) = ẅw(w + 1)(w − 2)− ẇ2

(
3

2
w2 − w − 1

)
− ẇw(w + 1)2+

+ 2aw(w + 1)2 − cw2(2w − 1) + ωw2(w + 1)2 ,

where ω = b− d.
According to Theorem 10 all nonconstant power series solutions to equation

h∗0(ξ,w) = 0 form two families:

main (if α
def
= a− c 6= 0)

w = ϕ0 =
α

2
(ξ + c0)

2 − a

α
, (80)

and additional (if α = 0, a 6= 0)

w = ϕ0 = β(ξ + c0), β2 = 2a , (81)

where c0 is arbitrary constant. Let us compute the second coefficient ϕ1(ξ) of expan-
sion (45), using equation (46). Here

δh∗0
δz

= w(w + 1)
d2

dξ2
− (2w + 1)ẇ

d

dξ
+ 2a(w + 1)− 2cw + ẅ(2w + 1)−

−ẇ2 def
= a1

d2

dξ2
+ a2

d

dξ
+ a3 .
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According to Corollary 1 equation (46) for ϕ1 is equivalent to equation

a1[ϕ1 + 2ϕ̇1 + ϕ̈1] + a2[ϕ1 + ϕ̇1] + a3ϕ1 + h∗1 = 0 . (82)

Denote ξ = logx+ c0. For the additional family (81)

a1 = βξ(βξ + 1), a2 = −β(2βξ + 1), a3 = 0 ,

h1 = 2a(w + 1)2 − βw(w + 1)2 + ωw2(w + 1)2 ,

because here a = c. Equation (82) has polynomial solution

ϕ1 = 2ωaξ2 + [ω(4a− β) + 2a]ξ + ω(β − 4a) + β − 2a . (83)

Calculation of ϕ2 see in [9].

For the main family (80)

a1 = w(w + 1), a2 = −αξ(2w + 1), a3 = α(2w + 1) ,

h∗1 = ωw2(w + 1)2 − αξw(w + 1)2 + 2a(w + 1)2 .

If in equation (82) h∗1 = ωw2(w+1)2, then according to Theorem 11, it has polynomial

solution (64) with ω instead of c. Now we consider equation (82) for ω = 0. We look

for its polynomial solution in the form

ϕ1 = Aξ4 +Bξ3 + Cξ2 +Dξ + E . (84)

For 5 coefficients A,B,C,D,E we obtain a system of 9 linear algebraic equations.

They correspond to vanishing coefficients near ξ8, ξ7, · · · , ξ0, which arrive after
substitution of expression (84) into equation (82). From coefficients near ξ8, ξ7, · · · ,
ξ4, we obtain

A = 0, B = α2/2, C = −α2, D = α2 + α− a, E = 0.

Inserting these values into coefficient near ξ3, ξ2, ξ1, ξ0, we obtain the zeroes. And
polynomial solution (84) of the full equation (82) has

A = −ωα
2

4
, B = ωα2 +

α2

2
, C = −ω

(
2α2 +

α

2
− a

)
− α2, (85)

D = ω
(
2α2 + α− 2a

)
+ α2 + α− a, E = −ωa(a− α)

α2
.

Thus, we have proven

Theorem 14. The second coefficient ϕ1 of the complicated expansion (45) of solution

to equation P6 is a polynomial (84), (85) for the main family and is a polynomial (83)

for the additional family.

Calculation of ϕ2 see in [9].



– 40 –

6.3. Exotic expansions. Let us introduce new independent variable ξ = xiγ accord-
ing to (52), (53), (54). Then expressions (79) after division by γ2 take forms

h̃0(ξ,w) = γ−2h0(x,w) = −(ẇξ + ẅξ2)w(w + 1) + ẇ2ξ2(w + 1
2) + ã(w + 1)2 − c̃w2,

h̃1(ξ,w) = γ−2h1(x,w) = −(ẇξ + ẅξ2)w(w + 1)(w − 2) + ẇ2ξ2(32w
2 − w − 1)+

+
1

iγ
ξẇw(w + 1)2 + 2ãw(w + 1)2 − c̃w2(2w − 1) + ω̃w2(w + 1)2 ,

(86)

where

ã = a/γ2, b̃ = b/γ2, c̃ = c/γ2, ω̃ = ω/γ2, .

In (86) h̃0(ξ,w) coincides with h̃0(ξ,w) from (65), if −c change by b. So according
to Theorem 12, all power series solutions to equation h̃0(ξ,w) = 0 from (86) are

w = ϕ0 = Aξ +B + Cξ−1 ,

where

B = ã− c̃− 1

2
, 4AC = (ã− c̃)2 + ã+ c̃+

1

4
.

According to (86),

δh̃0
δw

= −w(w + 1)ξ2
d2

dξ2
+ [(2w + 1)ẇξ − w(w + 1)]

d

dξ
+ 2ã(w + 1)−

−2c̃w − (2w + 1)(ξẇ + ξ2ẅ) + ξ2ẇ2 .

According to Corollary 2, equation (46) for ϕ1(ξ) is (71) with following changes:
a1,a2 and a3 are the same as in Subsection 5.3, with−2c̃ instead of 2b̃, h̃1 = h̃16+ω̃h̃15,
where h̃15 is from Subsection 5.3 and

h̃16 =
2 + iγ

2iγ
A4ξ4 +

(
3 + 2iγ

iγ
B +

2 + iγ

iγ

)
A3ξ3+

+

(
10AC +

2 + 4iγ

iγ
B2 +

3 + 5iγ

iγ
B +

2 + iγ

2iγ

)
A2ξ2+

+

(
20ABC + 4AC − 6iγ − 1

2iγ
B3 +

iγ − 1

2iγ
B2 − 5

2
B

)
Aξ+

+20AB2C + 14ABC +
1

4
B(B + 1)(9B2 + 13B + 2)+

+

(
20ABC + 4AC − 1 + 6iγ

2iγ
B3 +

1 + iγ

2iγ
B2 − 5

2
B

)
Cξ−1+
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+

(
10AC − 2− 4iγ

iγ
B2 − 3− 5iγ

iγ
B − 2− iγ

2iγ

)
C2ξ−2+

+

(
−3− 2iγ

iγ
B − 2− iγ

iγ

)
C3ξ−3 − 2− iγ

2iγ
C4ξ−4 .

Polynomial solution ϕ1 to new equation (71) we look for in the form (72). Again

we obtain a system of 9 linear algebraic equations for 5 coefficients. Let us consider

case ω̃ = 0. From vanishing coefficients near ξ4,ξ3,ξ2, we find

D = − (2 + iγ)γ2

2iγ(1 + iγ)2
A2 ,

E = −
[

B

iγ(1 + iγ)
+

2 + iγ

2iγ(1 + iγ)

]
γ2A = −

[
Ω

2iγ(1 + iγ)
+

1

2iγ

]
γ2A ,

F1 = 2ACγ2
[
(2 + iγ)(1 + 4iγ − γ2)

2iγ(1 + iγ2)2
− 5

(1− iγ)2

]
+

+B(B + 1)γ2
[
(2 + iγ)(1 + 4iγ + γ2)

2iγ(1 + iγ2)2
− 4

(1− iγ)2

]
,

(87)

where Ω = 2B + 1.
From vanishing coefficients near ξ−4,ξ−3,ξ−2, we obtain

H = − (2− iγ)γ2

2iγ(1− iγ)2
C2 ,

G =

[
B

iγ(1− iγ)
+

2− iγ

2iγ(1− iγ)

]
γ2C =

[
Ω

2iγ(1− iγ)
+

1

2iγ

]
γ2C ,

F2 = −2ACγ2
[
(2− iγ)(1− 4iγ − 9γ2)

2iγ(1 + iγ2)2
+

5

(1 + iγ)2

]
−

−B(B + 1)γ2
[
(2− iγ)(1− 4iγ − 7γ2)

2iγ(1 + iγ2)2
+

4

(1 + iγ)2

]
.

(88)

Equality F1 = F2 is possible, iff 2AC +B(B + 1) = 0, see (75). Then

F = −2AC
γ2

(1 + γ2)2
= B(B + 1)

γ2

(1 + γ2)2
. (89)
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Coefficients near ξ1 and ξ−1 vanish for values (87), (88), (89). Coefficient near

ξ0 vanishes if
AC(6B2 −B − 3) = 0 . (90)

If ω̃ 6= 0, we have additional condition (77) for polynomiality of ϕ1(ξ), i.e.

ωA(2B + 1)C(γ2 − 1) = 0 . (91)

Thus, we have proven

Theorem 15. In the exotic expansion (45) of solutions to equation P6, the second coef-

ficient ϕ1(ξ) never is a Laurent polynomial (72), (73)+ (87), (74)+ (88), (76)+ (89)

with ω = b− d instead of c, if 3 conditions (75), (90) and (91) are fulfilled.

Usually the equation for ϕk(ξ) has two solutions: with increasing and with
decreasing powers of ξ. But they coincide if the solution is an usual or Laurent
polynomial. If all coefficients ϕk(ξ) are polynomials then there is one family of exotic
expansions. In another case there are two different families. Details see in [10].

7. Conclusion

In both cases: complicated and exotic expansions we have its own alternative.

In complicated expansion the coefficient ϕk(ξ) is either a polynomial or a divergent
Laurent series. In exotic expansion the coefficientϕk(ξ) is either a Laurent polynomial,
in that case it is unique, or a Laurent series, then there are two different coefficients in

form of convergent series. The convergence follows from [12].

In all considered cases, when coefficient ϕk(ξ) = Dξm + Eξm−1 + Fξm−2 +
. . . of the complicated or exotic expansion is an usual or Laurent polynomial, its
coefficientsD,E,F, . . . , satisfy to a system of linear algebraic equations. And number

of equations is more then number of these coefficients. Such linear systems have

solutions only in degenerated cases when rank of the extended matrix of the system is

less then the maximal possible. Existence of such situations in the Painlevé equations

shows their degeneracy or their inner symmetries.

We have considered 4 cases: equations P3, Case I of P5, Case II of P5, P6. In

each of them there are 3 families: additional complicated, main complicated and exotic.

Among these 12 families, 9 have polynomial second coefficient, but 3 families demand
for that some conditions on parameters. Namely, main complicated family for Case I

of P5 demands one condition; exotic families for Case II of P5 and for P6 demand 2
conditions and 3 conditions correspondingly. In all cases number of conditions is less
than difference between number of equations and number of unknowns.

All these calculations were made by hands. Further computations should be

made using Computer Algebra.
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