K0.5Na0.5VO3-SiO2 Co-sintering Agent of Ceramic Mg0.8Ti0.2O3 as Dielectric Material Candidate

  • Sefrilita Risqi Adikaning Rani Universitas Islam Negeri Alauddin Makassar
  • Ika Widya Wahyuningsih Institut Teknologi Sepuluh Nopember Surabaya
  • Cindi Regita Cahyani Universitas Islam Negeri Alauddin Makassar
Keywords: Sintering, Mg0.8Zn0.2TiO3, Solid state

Abstract

This paper focuses on the characteristics of K0.5Na0.5VO3 (KNV) and SiO2 when added to Mg0.8Zn0.2TiO3 (MZT) material to reduce the sintering temperature. Initially, a single phase of Mg0.8Zn0.2TiO3 (MZT) was synthesized using the conventional solid-state reaction method at 850°C for 4 hours. Subsequently, (K0.5Na0.5)VO3 was formed as a single phase at a temperature of 500°C for 2 hours. The reduction of MZT sintering temperature was then carried out by adding K0.5Na0.5VO3 and SiO2 and sintering at 950°C for 4 hours. Adding K0.5Na0.5VO3 and SiO2 resulted in a maximum density value of 2.76 g/cc and an average grain size of 3 µm based on scanning electron microscopy (SEM) analysis. The optimal composition was found to be 0.7MZT-0.25KNV-0.05SiO2. X-ray diffraction (XRD) characterization using the Rietveld method revealed the presence of three phases: (Mg/Zn)TiO3, (K/Na)VO3, and MgTi2O5. Based on the results, it can be concluded that the (K/Na)VO3-SiO2 material can be effectively utilized as a sintering agent for (Mg/Zn)TiO3, reducing the sintering temperature of the material.

Downloads

Download data is not yet available.

References

Z. Fang et al., ‘Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics’, Ceram. Int., vol. 47, no. 15, pp. 21388–21397, Aug. 2021, doi: 10.1016/j.ceramint.2021.04.148.

S. Rabha and P. Dobbidi, ‘Structural, electrical properties and stability in microwave dielectric properties of (1- x) MgTiO3-x SrTiO3 composite ceramics’, J. Alloys Compd., vol. 872, p. 159726, 2021.

Z.-X. He et al., ‘Microwave dielectric properties of (0.75 ZnAl2O4–0.25 TiO2)–MgTiO3 ceramics prepared using digital light processing technology’, J. Am. Ceram. Soc., vol. 105, no. 6, pp. 4191–4199, 2022.

T. Yue, L. Li, M. Du, and Y. Zhan, ‘Multilayer co-fired microwave dielectric ceramics in MgTiO3-Li2TiO3 system with linear temperature coefficient of resonant frequency’, Scr. Mater., vol. 205, p. 114185, Dec. 2021, doi: 10.1016/j.scriptamat.2021.114185.

N. Santha, M. Rakhi, and G. Subodh, ‘Fabrication of high quality factor cold sintered MgTiO3–NaCl microwave ceramic composites’, Mater. Chem. Phys., vol. 255, p. 123636, Nov. 2020, doi: 10.1016/j.matchemphys.2020.123636.

H. J. Jo, J. S. Kim, and E. S. Kim, ‘Microwave dielectric properties of MgTiO3-based ceramics’, Ceram. Int., vol. 41, pp. S530–S536, Jul. 2015, doi: 10.1016/j.ceramint.2015.03.142.

S. R. A. Rani, A. P. Sambayu, and S. Suasmoro, ‘Low-temperature sintering processes of Mg0. 8Zn0. 2TiO3 through K0. 5Na0. 5VO3 and Bi2O3 addition correlated to the dielectric properties’, Bull. Mater. Sci., vol. 45, no. 1, pp. 1–6, 2022.

F. U. Ermawati, S. Pratapa, S. Suasmoro, T. Hübert, and U. Banach, ‘Preparation and structural study of Mg1−xZnxTiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz’, J. Mater. Sci. Mater. Electron., vol. 27, no. 7, pp. 6637–6645, Jul. 2016, doi: 10.1007/s10854-016-4610-6.

A. Modwi et al., ‘Excellent adsorption of dyes via MgTiO3@ g-C3N4 nanohybrid: construction, description and adsorption mechanism’, Inorganics, vol. 10, no. 11, p. 210, 2022.

R. Meher, R. Padhee, and S. K. Parida, ‘Cerium modified (BiFeO3) 0.5–(MgTiO3) 0.5 ceramics: Structural, microstructural, dielectric, transport and optical properties’, J. Mol. Struct., vol. 1276, p. 134765, 2023.

Y. Yu et al., ‘Grain size engineered 0.95 MgTiO3–0.05 CaTiO3 ceramics with excellent microwave dielectric properties and prominent mechanical performance’, J. Am. Ceram. Soc., vol. 105, no. 1, pp. 299–307, 2022.

F. Belnou, J. Bernard, D. Houivet, and J.-M. Haussonne, ‘Low temperature sintering of MgTiO3 with bismuth oxide based additions’, J. Eur. Ceram. Soc., vol. 25, no. 12, pp. 2785–2789, Jan. 2005, doi: 10.1016/j.jeurceramsoc.2005.03.140.

H. Li et al., ‘The structure and properties of 0.95MgTiO3–0.05CaTiO3 ceramics doped with Co2O3’, J. Mater. Sci., vol. 49, no. 17, pp. 5850–5855, Sep. 2014, doi: 10.1007/s10853-014-8294-0.

X. Liu and C. Zuo, ‘Effect of copper vanadate sintering aid on the microstructure and dielectric properties of (Zn, Mg)TiO3 ceramics’, J. Mater. Sci. Mater. Electron., vol. 27, no. 5, pp. 5462–5467, May 2016, doi: 10.1007/s10854-016-4450-4.

M. Saukani and S. Suasmoro, ‘Characterization of Mg0.8Zn0.2TiO3 Prepared via Liquid Phase Sintering’, Adv. Mater. Res., vol. 1112, pp. 11–14, 2015, doi: 10.4028/www.scientific.net/AMR.1112.11.

X. Zhu, F. Kong, and X. Ma, ‘Sintering behavior and properties of MgTiO3/CaO-B2O3-SiO2 ceramic composites for LTCC applications’, Ceram. Int., vol. 45, no. 2, pp. 1940–1945, 2019.

H. Yu, T. Luo, L. He, and J. Liu, ‘Effect of ZnO on Mg2TiO4–MgTiO3–CaTiO3 microwave dielectric ceramics prepared by reaction sintering route’, Adv. Appl. Ceram., vol. 118, no. 3, pp. 98–105, Apr. 2019, doi: 10.1080/17436753.2018.1525934.

F. U. Ermawati, S. Suasmoro, and P. Suminar, ‘A Simple Dissolved Metals Mixing Route to Prepare Nanostructured Mg0.8Zn0.2TiO3 Solid Solution’, Adv. Mater. Res., vol. 1112, pp. 47–52, 2015, doi: 10.4028/www.scientific.net/AMR.1112.47.

F. Latief, M. Absa, M. Andansari, M. A. Baqiya, and S. Suasmoro, ‘Synthesis of nano-size BaTiO3–BiFeO3 system with low melting temperature KVO3 addition’, Ferroelectrics, vol. 599, no. 1, pp. 237–248, Oct. 2022, doi: 10.1080/00150193.2022.2113655.

H. T. Evans, ‘Crystal structure refinement and vanadium bonding in the metavanadates KVO3 , NH4VO3 and KVO3H2O’, Z. Für Krist. - Cryst. Mater., vol. 114, no. 1–6, pp. 257–277, Dec. 1960, doi: 10.1524/zkri.1960.114.16.257.

S. R. A. Rani, M. Andansari, and Suasmoro, ‘Low-Sintering temperature with V2O5 addition at dielectric Zn0.8Mg0.2TiO3 prepared through solid state-reaction’, AIP Conf. Proc., vol. 2391, no. 1, p. 070019, Mar. 2022, doi: 10.1063/5.0072810.

C.-L. Huang, M.-H. Weng, C.-C. Wu, and C.-C. Wei, ‘Microwave Dielectric Properties and Microstructures of V2O5-Modified Zr0.8Sn0.2TiO4 Ceramics’, Jpn. J. Appl. Phys., vol. 40, no. 2R, p. 698, Feb. 2001, doi: 10.1143/JJAP.40.698.

A. Kan, H. Ogawa, A. Yokoi, and H. Ohsato, ‘Low-Temperature Sintering and Microstructure of Mg4(Nb2-xVx)O9 Microwave Dielectric Ceramic by V Substitution for Nb’, Jpn. J. Appl. Phys., vol. 42, no. 9S, p. 6154, Sep. 2003, doi: 10.1143/JJAP.42.6154.

A. P. Sambanyu and S. Suasmoro, ‘Sintesis K0, 5Na0, 5VO3 dengan Metode Reaksi Padat dan Potensi Sebagai Co-Firing Agent’, J. Sains Dan Seni ITS, vol. 5, no. 2, 2016.

S. R. A. Rani and S. Suasmoro, ‘Pencampuran dengan Attritor Mill pada Sintesis Mg0, 8Zn0, 2TiO3’, J. Sains Dan Seni ITS, vol. 5, no. 2, 2016.
Published
2023-07-11
How to Cite
Rani, S., Wahyuningsih, I., & Cahyani, C. (2023). K0.5Na0.5VO3-SiO2 Co-sintering Agent of Ceramic Mg0.8Ti0.2O3 as Dielectric Material Candidate. KONSTAN - JURNAL FISIKA DAN PENDIDIKAN FISIKA, 8(01), 19-25. https://doi.org/https://doi.org/10.20414/konstan.v8i01.251