Стр.
Скачать статью

Применение импульсных и высокочастотных методов электронного парамагнитного резонанса для исследования нефтяных дисперсных систем

М.Р. Гафуров, А.А. Пономарев, Г.В. Мамин, А.А. Родионов, Ф.Ф. Мурзаханов, Т. Араш, С.Б. Орлинский

Обзорная статья

DOI https://doi.org/10.18599/grs.2020.4.2-14

2-14
rus.
eng.

open access

Under a Creative Commons license
Методами стационарного и импульсного электронного парамагнитного резонанса (ЭПР) в двух частотных диапазонах (X и W, с частотами микроволнового излучения около 9 ГГц и 95 ГГц, соответственно) исследованы спектральные и релаксационные характеристики «свободных» органических радикалов (СР) и ванадил-порфириновых комплексов (ВПК) в различных образцах нефтяных дисперсных систем (битумы, нефти, их высокомолекулярные компоненты и растворы). Рассмотрены отличительные особенности применения импульсных методов (электронное спиновое эхо, изучение модуляции спада сигнала электронного спинового эха, времен электронной релаксации) и высокочастотного ЭПР в изучении углеводородных систем. Применение ЭПР в W-диапазоне позволяет спектрально разрешить линии от разных парамагнитных центров, точнее определить их спектральные характеристики. Показано, что электронное спиновое эхо (в том числе и в сильных магнитных полях с индукцией 3.4 Тл) можно наблюдать и при комнатных температурах, что потенциально позволяет применять разнообразный арсенал методик импульсного ЭПР в полевых условиях и удешевить проведение импульсных измерений. Анализ кривой спада поперечной намагниченности на компонентах ВПК позволяет идентифицировать электрон-ядерные взаимодействия с ядрами окружения 14N и 1H в условиях in situ, в то время как в спектрах ЭПР указанные сверхтонкие взаимодействия обнаружить не удается. Выявлено, что форма линии сигнала ЭПР для СР в W-диапазоне не описывается изотропной одиночной линией, как в X-диапазоне. Описан эффект увеличения скоростей электронной поперечной релаксации в асфальтенах в рамках модели спектральной диффузии между быстро- и медленно релаксирующими парамагнитными центрами в надмолекулярных комплексах асфальтенов.
 

Электронный парамагнитный резонанс, нефтяные дисперсные системы, асфальтены

 

  • Абрагам А., Блини Б. (1973). Электронный парамагнитный резонанс переходных ионов. Том 2. Перевод с англ. М.: Мир, 349 с.
  • Абызгильдин Ю.Н., Михайлюк Ю.Н., Яруллин К.С., Ростовская А.А. (1977). Порфирины и металлопорфириновые комплексы нефтей. М.: Наука, 88 с.
  • Гарифьянов Н.С., Козырев Б.М. (1956). Парамагнитный резонанс в антраците и других содержащих углерод веществах. ЖЭТФ, 30(2), с. 272–276.
  • Гилинская Л.Г. (2008). Спектры ЭПР комплексов V (IV) и структура нефтяных порфиринов. Журнал структурной химии, 49(2), с. 245–254.
  • Дзюба С.А. (2013). Изучение структуры биологических мембран с помощью ESEEM спектроскопии спиновых меток и дейтериевого замещения. Журнал структурной химии, 54(S1), с. 5–18.
  • Ильясов А.В. (1962). Определение содержания ванадия в нефтях и нефтепродуктах методом ЭПР. Химия и технология топлив и масел,  9, с. 63–67.
  • Ильясов А.В., Гарифьянов Н.С., Рыжманов Ю.С. (1961). Электронный парамагнитный резонанс в некоторых сортах природной нефти и ее тяжелых фракциях. Химия и технология топлив и масел, 1, с. 28–31.
  • Муравьев Ф.А., Винокуров В.М., Галеев А.А., Булка Г.Р., Низамутдинов Н.М., Хасанова Н.М. (2006). Парамагнетизм и природа рассеянного органического вещества в пермских отложениях Татарстана. Георесурсы, 2(19), с. 40–45.
  • Нестеров И.И., Александров В.М., Пономарев А.А., Заватский М.Д., Лободенко Е.И., Кобылинский Д.А., Кадыров М.А. (2019). Экспериментальные исследования радикальных реакций преобразования углеводородного сырья. Известия высших учебных заведений. Нефть и газ, 4, с. 57–69. https://doi.org/10.31660/0445-0108-2019-4-57-69
  • Пономарев А.А. (2019). Механизм крекинга углеводородов в электромагнитных полях-к вопросу об образовании баженовской нефти. Известия высших учебных заведений. Нефть и газ, 1, с. 14–18. https://doi.org/10.31660/0445-0108-2019-1-14-18
  • Сафиева Р.З. (2004). Химия нефти и газа. Нефтяные дисперсные системы: состав и свойства (часть 1). М.: РГУ нефти и газа им. И.М. Губкина, 112 с.
  • Сюняев З.И., Сафиева Р.З., Сюняев Р.З. (1990). Нефтяные дисперсные системы. М.: Химия, 224 с.
  • Сюняев З.И. (1980). Концентрация сложных структурных единиц в нефтяных дисперсных системах и методы ее регулирования. Химия и технология топлив и масел, 16(7), c. 484–489.
  • Acevedo S., Guzman K., Ocanto O. (2010). Determination of the number average molecular mass of asphaltenes (Mn) using their soluble A2 fraction and the vapor pressure osmometry (VPO) technique. Energy & Fuels, 24(3), pp. 1809–1812. https://doi.org/10.1021/ef9012714
  • Al-Muntaser A.A., Varfolomeev M.A., Suwaid M.A. et al. (2020). Hydrothermal upgrading of heavy oil in the presence of water at sub-critical, near-critical and supercritical conditions, Journal of Petroleum Science and Engineering, 184, 106592. https://doi.org/10.1016/j.petrol.2019.106592
  • Alexandrov A.S., Ivanov A.A., Archipov R.V., Gafurov M.R., Tagirov M.S. (2019). Pulsed NMR spectrometer with dynamic nuclear polarization for weak magnetic fields. Magnetic Resonance in Solids, 21(2), pp. 19203 (1–6). https://doi.org/10.26907/mrsej-19203
  • Cui Q., Ma X., Nakano K., Nakabayashi K., Miyawaki J., Al-Mutairi A. et al. (2018). Hydrotreating reactivities of atmospheric residues and correlation with their composition and properties. Energy & Fuels, 32(6), pp. 6726–6736. https://doi.org/10.1021/acs.energyfuels.8b01150
  • Cui Q., Nakabayashi K., Ma X., Ideta K., Miyawaki J., Marafi A.M. et al. (2017). Examining the molecular entanglement between V=O complexes and their matrices in atmospheric residues by ESR. RSC advances, 7(60), pp. 37908–37914. https://doi.org/10.1039/C7RA06436E
  • Davydov V.V., Dudkin V.I., Myazin N.S., Rud’ V.Yu. (2018). Peculiarity of the Nuclear Magnetic Resonance Method Application for the Liquid Medium Flow Parameters Control. Applied Magnetic Resonance, 49(7), pp. 665–679. https://doi.org/10.1007/s00723-018-0994-1
  • Deligiannakis Y., Louloudi M., Hadjiliadis N. (2000). Electron spin echo envelope modulation (ESEEM) spectroscopy as a tool to investigate the coordination environment of metal centers. Coordination Chemistry Reviews, 204(1), pp. 1–112. https://doi.org/10.1016/S0010-8545(99)00218-0
  • Di Mauro E., Guedes, C.L.B., Nascimento O.R. (2005). Multifrequency (X-band to W-band) CW EPR of the organic free radical in petroleum asphaltene. Applied Magnetic Resonance, 29(4), pp. 569–575. https://doi.org/10.1007/BF03166333
  • Dickson F.E., Kunesh, C.J., McGinnis E.L., Petrakis L. (1972). Use of electron spin resonance to characterize the vanadium (IV)-sulfur species in petroleum. Anal. Chem., 44(6), pp. 978–981. https://doi.org/10.1021/ac60314a009
  • Dikanov S.A., Tsvetkov Y.D. (1992). Electron Spin-Echo Envelope Modulation (ESEEM) Spectroscopy. USA: CRC Press, 432 p.
  • Dolomatov M., Gafurov M., Rodionov A., Mamin G., González L.M., Vakhin A., Petrov A., Bakhtizin R., Khairudinov I., Orlinskii, S. (2018). Low-temperature thermal decomposition of heavy petroleum distillates: interconnection between the electrical properties and concentration of paramagnetic centres. IOP Conf. Ser.: Earth Environ. Sci., 155, 012007. https://doi.org/10.1088/1755-1315/155/1/012007
  • Dolomatov M.U., Rodionov A.A., Gafurov M.R., Petrov A.V., Biktagirov T.B., Bakhtizin R.Z., Makarchikov S.O., Khairudinov I.Z. and Orlinskii S.B. (2016). Concentration of paramagnetic centres at low-temperature thermal destruction of asphaltenes of heavy petroleum distillates. Magnetic Resonance in Solids, 18, 16101. http://mrsej.kpfu.ru/contents.html#16101
  • Eaton, G.R., Eaton, S.S., Barr, D.P., Weber, R.T. (2010). Quantitative EPR. Vienna: Springer-Verlag Wien. https://doi.org/10.1007/978-3-211-92948-3
  • Gafurov M.R., Volodin M.A., Rodionov et al. (2018). EPR study of spectra transformations of the intrinsic vanadyl-porphyrin complexes in heavy crude oils with temperature to probe the asphaltenes’ aggregation. Journal of Petroleum Science and Engineering, 166, pp. 363–368. https://doi.org/10.1016/j.petrol.2018.02.045
  • Galukhin A., Bolmatenkov D., Osin Y. (2018). Heavy oil oxidation in the nano-porous medium of synthetic opal, RSC Adv., 8, pp. 18110–18116. https://doi.org/10.1039/C8RA02822B
  • Gizatullin B., Gafurov M., Vakhin et al. (2019). Native Vanadyl Complexes in Crude Oil as Polarizing Agents for In Situ Proton Dynamic Nuclear Polarization. Energy & Fuels, 33(11), pp. 10923–10932. https://doi.org/10.1021/acs.energyfuels.9b03049
  • Gizatullin B., Gafurov, M., Rodionov A., Mamin, G., Mattea, C., Stapf, S., Orlinskii, S. (2018). Proton–Radical Interaction in Crude Oil – A Combined NMR and EPR Study. Energy & fuels, 32(11), pp. 11261–11268. https://doi.org/10.1021/acs.energyfuels.8b02507
  • Gracheva I, Gafurov M., Mamin G., Biktagirov T., Rodionov A., Galukhin V., Orlinskii S.B. (2016). ENDOR Study of Nitrogen Hyperfine and Quadropole Tensors in Vanadyl Porhyrins of Heavy Crude Oils. Magnetic Resonance in Solids, 18, 16102. http://mrsej.kpfu.ru/contents.html#16102
  • Gutowsky H., Roger Ray B., Rutledge R., Unterberger R. (1958). Carbonaceous Free Radicals in Crude Petroleum. J. Chem. Phys., 28, pp. 744–745. https://doi.org/10.1063/1.1744250
  • Ilyin S.O., Arinina M.P., Polyakova M.Y. et al. (2016). Rheological comparison of light and heavy crude oils. Fuel, 186, pp. 157–167. https://doi.org/10.1016/j.fuel.2016.08.072
  • Khasanova N.M., Gabdrakhmanov D.T., Kayukova G.P., Morozov V.P., Mikhaylova A.N. (2017). EPR study of hydrocarbon generation potential of organic-rich domanik rocks, Magnetic Resonance in Solids, 19(1), 17102.
  • Mamin G., Gafurov M., Yusupov R., Gracheva I., Ganeeva Y., Yusupova T., Orlinskii S.B. (2016). Toward the Asphaltene Structure by Electron Paramagnetic Resonance Relaxation Studies at High Fields (3.4 T). Energy & Fuels, 30(9), pp. 6942–6946. https://doi.org/10.1021/acs.energyfuels.6b00983
  • Martyanov O.N., Larichev Y.V., Morozov E.V., Trukhan S.N., Kazarian S.G. (2017). The stability and evolution of oil systems studied via advanced methods in situ. Russ. Chem. Rev., 86, pp. 999–1023. https://doi.org/10.1070/RCR4742
  • Mehrabi-Kalajahi S.S, Varfolomeev M.A, Yuan C. et al. (2018). EPR as a complementary tool for the analysis of low-temperature oxidation reactions of crude oils. Journal of Petroleum Science and Engineering, 169, pp. 673–682. https://doi.org/10.1016/j.petrol.2018.05.049
  • Mukhamatdinov I., Gafurov M., Kemalov A., et al. (2018). Study of the oxidized and non-oxidized bitumen modified with additive «Adgezolin» by using electron paramagnetic resonance. IOP Conf. Ser.: Earth Environ. Sci., 155, 012004. https://doi.org/10.1088/1755-1315/155/1/012004
  • Mukhamatdinov I.I., Salih I.Sh.S., Rakhmatullin I.Z., Sitnov S.A., Laikov A.V., Klochkov V.V., Vakhin A.V. (2020). Influence of Co-based catalyst on subfractional composition of heavy oil asphaltenes during aquathermolysis, Journal of Petroleum Science and Engineering, 186, 106721. https://doi.org/10.1016/j.petrol.2019.106721
  • Mullins O., Pomerantz A.E., Zuo J., Dong C., Annu J. (2014). Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation. Rev. Chem. Biomol. Eng., 5, pp. 325–345. https://doi.org/10.1146/annurev-chembioeng-060713-035923
  • O’Reilly, D. (1958). Paramagnetic Resonance of Vanadyl Etioporphyrin I. J. Chem. Phys., 29(5), pp. 1188–1189. https://doi.org/10.1063/1.1744684
  • Piccinato M., Guedes C., Di Mauro E. (2012). Petroleum Asphaltenes. Crude Oil Emulsions – Composition Stability and Characterization. Ed. M. Abdul-Raouf. Rjeka: InTech, pp. 147–168.
  • Qin P, Warncke K. (2015a). Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions. Part A. Methods in Enzymology, 563, pp. 2–684.
  • Qin P., Warncke K. (2015b). Electron Paramagnetic Resonance Investigations of Biological Systems by Using Spin Labels, Spin Probes, and Intrinsic Metal Ions. Part B. Methods in Enzymology, 564, pp. 2–613.
  • Raghunathan P. (1991). Evidence for fractal dimension in asphaltene polymers from electron-spin-relaxation measurements. Chem. Phys. Lett. 182, pp. 331–335. https://doi.org/10.1016/0009-2614(91)80224-L
  • Ramachandran V., van Tol, J., McKenna A., Rodgers R., Marshall A., Dalal N. (2015). High Field Electron Paramagnetic Resonance Characterization of Electronic and Structural Environments for Paramagnetic Metal Ions and Organic Free Radicals in Deepwater Horizon Oil Spill Tar Balls. Anal. Chem., 87(4), pp. 2306–2313. https://doi.org/10.1021/ac504080g
  • Reijerse E.J., Tyryshkin A.M., Dikanov S.A. (1998). Complete determination of nitrogen quadrupole and hyperfine tensors in an oxovanadium complex by simultaneous fitting of multifrequency ESEEM powder spectra. Journal of Magnetic Resonance, 131(2), pp. 295–309. https://doi.org/10.1006/jmre.1997.1339
  • Sapunov V.A., Denisov A.Y., Saveliev D.V. et al. (2016). New vector/scalar Overhauser DNP magnetometers POS-4 for magnetic observatories and directional oil drilling support. Magnetic Resonance in Solids, 18(2), 16209.
  • Sapunov V.A., Kashin I.V., Ushakov V.A. et al. (2019). Little-known aspects of Overhauser DNP at zero and low magnetic fields stimulated by parallel electron pumping of nitroxide radicals solutions. AIP Conf. Proc., 2174, 020112. https://doi.org/10.1063/1.5134263
  • Schweiger A., Jeschke G. (2001). Principles of Pulse Electron Paramagnetic Resonance. Oxford: OUP.
  • Stoll S., Schweiger A. (2006). EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. ournal of Magnetic Resonance, 178, pp. 42–55. https://doi.org/10.1016/j.jmr.2005.08.013
  • Tayeb Ben K., Delpoux O., Barbier J., Marques J., Verstraete J., Vezin H. (2015). Applications of Pulsed Electron Paramagnetic Resonance Spectroscopy to the Identification of Vanadyl Complexes in Asphaltene Molecules. Part 1: Influence of the Origin of the Feed. Energy & Fuels, 29(7), pp. 4608–4615. https://doi.org/10.1021/acs.energyfuels.5b00733
  • Trukhan S., Yudanov V., Gabrienko A., Subramani V., Kazarian S., Martyanov O. (2014). In Situ Electron Spin Resonance Study of Molecular Dynamics of Asphaltenes at Elevated Temperature and Pressure. Energy & Fuels, 28(10), pp. 6315–6321. https://doi.org/10.1021/ef5015549
  • Vakhin A.V., Aliev F.A., Mukhamatdinov I.I., Sitnov S.A., Sharifullin A.V., Kudryashov S.I., Afanasiev I.S., Petrashov O.V., Nurgaliev D.K. (2020). Catalytic Aquathermolysis of Boca de Jaruco Heavy Oil with Nickel-Based Oil-Soluble Catalyst. Processes, 8(5), 532. https://doi.org/10.3390/pr8050532
  • Volodin M.A., Mamin G.V., Izotov V.V., & Orlinskii S.B. (2013). High-frequency EPR study of crude oils. J. Phys.: Conf. Ser., 478, 012003. https://doi.org/10.1088/1742-6596/478/1/012003
  • Wang W., Ma Y., Li S., Shi J., Teng J. (2016). Effect of Temperature on the EPR Properties of Oil Shale Pyrolysates. Energy & Fuels, 30(2), pp. 830–834. https://doi.org/10.1021/acs.energyfuels.5b02211
  • Yakubov M.R., Milordov D.V., Yakubova S.G., Morozov V.I. (2017). Vanadium and paramagnetic vanadyl complexes content in asphaltenes of heavy oils of various productive sediments. Petroleum Science and Technology, 35(14), pp. 1468–1472. https://doi.org/10.1080/10916466.2017.1344708
  • Yakubova S.G., Abilova G.R., Tazeeva, E.G., Borisova Y.Y., Milordov D.V., Mironov N.A., Yakubov M.R. (2019). Distribution of Vanadium and Nickel in the Case of Two-Step Solvent Fractionation of Asphaltenes of Heavy Oils. Petroleum Chemistry, 59(1), pp. S30–S36. https://doi.org/10.1134/S0965544119130140
  • Yen T., Chilingarian G. (1994). Asphaltenes and asphalts. 1. Developments in petroleum science. 40A. New York: Elsevier. https://doi.org/10.1016/S0376-7361(09)70248-1
  • Yen T., Chilingarian G. (2000). Asphaltenes and asphalts, 2. Developments in petroleum science. 40 B. New York: Elsevier.
  • Yen T.F., Erdman J.G., Saraceno A.J. (1962). Investigation of the Nature of Free Radicals in Petroleum Asphaltenes and Related Substances by Electron Spin Resonance. Analytical Chemistry, 34(6), pp. 694–700. https://doi.org/10.1021/ac60186a034
  • Zavoisky E. (1945). Paramagnetic Relaxation of Liquid Solutions for Perpendicular Fields. Journal of Physics (Academy of Sciences of the USSR), 9(3), pp. 211–216.
  • Zhang Y., Siskin M., Gray M.R., Walters C.C., Rodgers R.P. (2020). Mechanisms of Asphaltene Aggregation: Puzzles and a New Hypothesis. Energy & Fuels, 34(8), pp. 9094–9107. https://doi.org/10.1021/acs.energyfuels.0c01564
  • Zhao X., Xu, C., Shi Q. (2015). Porphyrins in Heavy Petroleums: A Review. In: Xu C., Shi Q. (ed.) Structure and Modeling of Complex Petroleum Mixtures. Structure and Bonding, 168. Springer, Cham. https://doi.org/10.1007/430_2015_189
  •  
Марат Ревгерович Гафуров
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 16а
 
Андрей Александрович Пономарев
Тюменский индустриальный университет
Россия, 625000, Тюмень, ул. Володарского, д. 38
 
Георгий Владимирович Мамин
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 18
 
Александр Александрович Родионов
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 18
 
Фадис Фанилович Мурзаханов
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 18
 
Таджик Араш
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 4
 
Сергей Борисович Орлинский
Казанский федеральный университет
Россия, 420008, Казань, ул. Кремлевская, д. 18
 

Для цитирования:

Гафуров М.Р., Пономарев А.А., Мамин Г.В., Родионов А.А., Мурзаханов Ф.Ф., Араш Т., Орлинский С.Б. (2020). Применение импульсных и высокочастотных методов электронного парамагнитного резонанса для исследования нефтяных дисперсных систем. Георесурсы, 22(4), c. 2–14. DOI: https://doi.org/10.18599/grs.2020.4.2-14

For citation:

Gafurov M.R., Ponomarev A.A., Mamin G.V., Rodionov A.A., Murzakhanov F.F., Arash T., Orlinskii S.B. (2020). Application of pulsed and high-frequency electron paramagnetic resonance techniques to study petroleum disperse systems. Georesursy = Georesources, 22(4), pp. 2–14. DOI: https://doi.org/10.18599/grs.2020.4.2-14