Araştırma Makalesi
BibTex RIS Kaynak Göster

Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri

Yıl 2019, Cilt: 30 Sayı: 5, 9399 - 9420, 01.09.2019
https://doi.org/10.18400/tekderg.397658

Öz

İstinat duvarlarının aktif şartlara ulaşması
sonucunda oluşan göçme yüzeylerinin geometrileri, granüler dolguların genleşim
davranışından etkilenmektedir. Literatürdeki gerilme-genleşim
denklemleri bağıl yoğunluğun ve ​​gerilme durumunun zeminin genleşim
davranışına etkilerini ortaya koymaktadır. Fakat bu değişkenlerin göçme anında
oluşacak kayma bandı geometrisine etkilerini model deneyler ile araştıran
mevcut çalışmalar düşük gerilmeler altında ve zeminlerin mikro-mekanik
özellikleri dikkate alınmadan gerçekleştirilmiştir. Bu nedenle, bu çalışmada
kullanılmak üzere aktif yönde yanal olarak hareket edebilen ve düşey yönde
sürşarj uygulayabilen küçük ölçekli bir 1G fiziksel istinat duvarı modeli oluşturulmuştur.
Fiziksel model deney düzeneği kullanılarak farklı tane şekli ve boyutlarına
sahip üç farklı granüler dolgu malzemesi ile çeşitli sıkılık-gerilme
tertiplerinde deneyler yapılmıştır. Yapılan model deneylerinin görüntüleri parçacık
görüntülü hız ölçümü (PGHÖ) yöntemi ile çözümlenmiş ve göçme yüzeyi geometrileri
elde edilmiştir. Böylece tane boyutu, şekli ve sürşarj yükünün göçme yüzeyi
geometrilerine etkileri araştırılmıştır.

Kaynakça

  • Rankine, W.M.J., On Stability of Loose Earth. Philisophic Transactions of Royal Society, London, Part I, 9-27, 1857.
  • Coulomb, C.A., Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science, 7, Paris, 1776.
  • Tsagareli, Z.V., Experimental Investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface, Soil Mechanics and Foundation Engineering, Volume 2, Issue 4, pp 197-200, 1965.
  • Vardoulakis, I., Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Met. Geomech., 4(2), 103-119, 1980.
  • Bang, S., Active Earth Pressure Behind Retaining Walls. Journal of Geotechnical Engineering, Vol.111, No.3, 407-412, 1985.
  • Fang, Y.S., Ishibashi, I., Static Earth Pressures with Various Wall Movements. Journal of Geotechnical Engineering, Vol.112, Issue 3, 1986. [7] Paik, K.H., Salgado, R., Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique 53, No. 7, 643-653, 2003.
  • Goel, S., Patra, N.R., Effect of arching on active earth pressure for rigid retaining walls considering translation mode. Int. J. Geomech., 8(2), 123-133, 2008.
  • Ertuğrul, N., Effect of soil arching on lateral soil pressures acting upon rigid retaining walls. Yüksek Lisans Tezi, ODTÜ, 2013.
  • [Rao, P.P., Chen, Q., Nimbalkar, S.S., Chiaro, G., Determination of Active Earth Pressure on Rigid Retaining Wall Considering Arching Effect in Cohesive Backfill Soil. International Journal of Geomechanics, 2015.
  • Kowalska, M., Numerical study of the Influence of the Dilatancy Angle on Bearing Capacity and Rotation of a Gravity Retaining Wall. 15.Danube European Conference on Geotechnical Engineering, Paper No. 186, 2014.
  • Oda, M., Initial fabrics and their relations to mechanical properties of granular material, Japanese Society of Soil Mechanics and Foundation Engineering. Vol.12, No.1, 1972.
  • Holubec, I., Appolonia, E.D., Effect of particle shape on the engineering properties of granular soils. ASTM, 304-318, 1973.
  • Frossard, E., Effect of sand grain shape on interparticle friction. Geotechnique 29, No. 3, 341-350, 1979.
  • Jensen, R.P., Edil, T.B., Bosscher, P.J., Plesha, M.E., Kahla, N.B., Effect of particle shape on interface behavior of DEM-simulated granular materials. The International Journal of Geomechanics, Volume 1, Number 1, 1-9, 2001.
  • Cho, G.C., Dodds, J., Santamarina, J.C., Particle Shape Effects on Packing Density, Stiffness and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. Eng., 132(5), 591-602, 2006.
  • Amirpour, S., Karray, M., Hussien, M.N., Chekired, M., Influence of particle size and gradation on the stress-dilatancy of granular material during CD test. International Journal of Geomechanics, 17(9): 04017077, 2017.
  • Bolton, M.D., Strength and dilatancy of sands. Geotechnique 36(1), 65-78, 1986.
  • Reynolds, O., On the Dilatancy of Media Composed of Rigid Particles in Contact. Philosophical Magazine and Journal of Science, Fifth series, 1886.
  • Taylor, D.W., Fundamentals of Soil Mechanics, New York. Wiley and Sons, 1948.
  • Rowe, P.W., The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact. Proceedings of the Royal Society, London, 500-527, 1962.
  • Rowe, P.W., The Relation Between the Shear Strength of Sands in Triaxial Compression, Plane Strain and Direct Shear. Geotechnique 19, No.1, 75-86, 1969.
  • De Josselin de Jong, G., Rowe’s Stress-Dilatancy Relation Based on Friction. Geotechnique 26, No.3, 527-534, 1976.
  • Bishop, A.W., Shear Strength Parameters for Undisturbed and Remolded Soil specimens. Proceedings of the Roscoe Memorial Symposium, Cambridge University, Cambridge, MA, USA, pp.3-58, 1971.
  • Chakraborty, T. and Salgado, R., Dilatancy and shear strength of sand at low confining pressures. J. Geotech. Geoenviron. Eng., 136(3), 527-532, 2010.
  • Altunbas, A., Soltanbeigi, B., Cinicioglu, O., Determination of Active Failure Surface Geometry for Cohesionless Backfills. Geomechanics and Engineering, Vol.12, No.6, 983-1001, 2017.
  • Peters, J.F., Lade, P.V., Shear Band Formation in Triaxial and Plane Strain Tests. Advanced Triaxial Testing of Soil and Rock, ASTM STP977, Philadelphia, 604-627, 1988.
  • Schanz, T., Vermeer, P.A., Angles of Friction and Dilatancy of Sand. Geotechnique 46, No.1, 145-151, 1996.
  • Hanna, A., Determination of Plane-Strain Shear Strength of Sand from the results of Triaxial Tests. Canadian Geotechnical Journal, 36,6 pg. 1231, 2001.
  • Moore, S.D., McCabe, G.P., Introduction ot the practice of statistics. 4th edition, W.H. Freeman and Company, New York, 2003.
  • Krumbein, W.C., Sloss, L.L., Stratigraphy and Sedimentation. Freeman, San Francisco, 1963.
  • Vaid, Y. P., Sasitharan, S., The strength and dilatancy of sand. Canadian Geotechnical Journal, 29(3), 522-526, 1992.
  • Niedostatkiewicz, M., Lesniewska, D., Tejchman, J., Experimental Analysis of Shear Zone Patterns in Sand During Earth Pressure Problems using Particle Image Velocimetry. Strain, Vol 47, 218– 231, 2011.
  • Lesniewska, D., Muir Wood, D., Photoelastic and Photographic Study of a Granular Material. Geotechnique, Vol 61, No 7 605–611, 2011.
  • Pietrzak, M., Lesniewska, D., Failure evaluation in granular material retained by rigid wall in active mode. Studia Geotechnica et Mechanica, Vol. 34 No. 4, 2012.
  • Tehrani, S., Arshad, M.I., Prezzi, M., Salgado, R., Visualization of active mode of failure behind flexible walls under pure rotation using digital image correlation. Geo-Congress Technical Papers, GSP 234, ASCE, 2014.
  • White, D.J., Take, W.A., Bolton, M.D., Soil Deformation Measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53, No. 7, 619-631, 2003.
Yıl 2019, Cilt: 30 Sayı: 5, 9399 - 9420, 01.09.2019
https://doi.org/10.18400/tekderg.397658

Öz

Kaynakça

  • Rankine, W.M.J., On Stability of Loose Earth. Philisophic Transactions of Royal Society, London, Part I, 9-27, 1857.
  • Coulomb, C.A., Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science, 7, Paris, 1776.
  • Tsagareli, Z.V., Experimental Investigation of the pressure of a loose medium on retaining walls with a vertical back face and horizontal backfill surface, Soil Mechanics and Foundation Engineering, Volume 2, Issue 4, pp 197-200, 1965.
  • Vardoulakis, I., Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Met. Geomech., 4(2), 103-119, 1980.
  • Bang, S., Active Earth Pressure Behind Retaining Walls. Journal of Geotechnical Engineering, Vol.111, No.3, 407-412, 1985.
  • Fang, Y.S., Ishibashi, I., Static Earth Pressures with Various Wall Movements. Journal of Geotechnical Engineering, Vol.112, Issue 3, 1986. [7] Paik, K.H., Salgado, R., Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique 53, No. 7, 643-653, 2003.
  • Goel, S., Patra, N.R., Effect of arching on active earth pressure for rigid retaining walls considering translation mode. Int. J. Geomech., 8(2), 123-133, 2008.
  • Ertuğrul, N., Effect of soil arching on lateral soil pressures acting upon rigid retaining walls. Yüksek Lisans Tezi, ODTÜ, 2013.
  • [Rao, P.P., Chen, Q., Nimbalkar, S.S., Chiaro, G., Determination of Active Earth Pressure on Rigid Retaining Wall Considering Arching Effect in Cohesive Backfill Soil. International Journal of Geomechanics, 2015.
  • Kowalska, M., Numerical study of the Influence of the Dilatancy Angle on Bearing Capacity and Rotation of a Gravity Retaining Wall. 15.Danube European Conference on Geotechnical Engineering, Paper No. 186, 2014.
  • Oda, M., Initial fabrics and their relations to mechanical properties of granular material, Japanese Society of Soil Mechanics and Foundation Engineering. Vol.12, No.1, 1972.
  • Holubec, I., Appolonia, E.D., Effect of particle shape on the engineering properties of granular soils. ASTM, 304-318, 1973.
  • Frossard, E., Effect of sand grain shape on interparticle friction. Geotechnique 29, No. 3, 341-350, 1979.
  • Jensen, R.P., Edil, T.B., Bosscher, P.J., Plesha, M.E., Kahla, N.B., Effect of particle shape on interface behavior of DEM-simulated granular materials. The International Journal of Geomechanics, Volume 1, Number 1, 1-9, 2001.
  • Cho, G.C., Dodds, J., Santamarina, J.C., Particle Shape Effects on Packing Density, Stiffness and Strength: Natural and Crushed Sands. J. Geotech. Geoenviron. Eng., 132(5), 591-602, 2006.
  • Amirpour, S., Karray, M., Hussien, M.N., Chekired, M., Influence of particle size and gradation on the stress-dilatancy of granular material during CD test. International Journal of Geomechanics, 17(9): 04017077, 2017.
  • Bolton, M.D., Strength and dilatancy of sands. Geotechnique 36(1), 65-78, 1986.
  • Reynolds, O., On the Dilatancy of Media Composed of Rigid Particles in Contact. Philosophical Magazine and Journal of Science, Fifth series, 1886.
  • Taylor, D.W., Fundamentals of Soil Mechanics, New York. Wiley and Sons, 1948.
  • Rowe, P.W., The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact. Proceedings of the Royal Society, London, 500-527, 1962.
  • Rowe, P.W., The Relation Between the Shear Strength of Sands in Triaxial Compression, Plane Strain and Direct Shear. Geotechnique 19, No.1, 75-86, 1969.
  • De Josselin de Jong, G., Rowe’s Stress-Dilatancy Relation Based on Friction. Geotechnique 26, No.3, 527-534, 1976.
  • Bishop, A.W., Shear Strength Parameters for Undisturbed and Remolded Soil specimens. Proceedings of the Roscoe Memorial Symposium, Cambridge University, Cambridge, MA, USA, pp.3-58, 1971.
  • Chakraborty, T. and Salgado, R., Dilatancy and shear strength of sand at low confining pressures. J. Geotech. Geoenviron. Eng., 136(3), 527-532, 2010.
  • Altunbas, A., Soltanbeigi, B., Cinicioglu, O., Determination of Active Failure Surface Geometry for Cohesionless Backfills. Geomechanics and Engineering, Vol.12, No.6, 983-1001, 2017.
  • Peters, J.F., Lade, P.V., Shear Band Formation in Triaxial and Plane Strain Tests. Advanced Triaxial Testing of Soil and Rock, ASTM STP977, Philadelphia, 604-627, 1988.
  • Schanz, T., Vermeer, P.A., Angles of Friction and Dilatancy of Sand. Geotechnique 46, No.1, 145-151, 1996.
  • Hanna, A., Determination of Plane-Strain Shear Strength of Sand from the results of Triaxial Tests. Canadian Geotechnical Journal, 36,6 pg. 1231, 2001.
  • Moore, S.D., McCabe, G.P., Introduction ot the practice of statistics. 4th edition, W.H. Freeman and Company, New York, 2003.
  • Krumbein, W.C., Sloss, L.L., Stratigraphy and Sedimentation. Freeman, San Francisco, 1963.
  • Vaid, Y. P., Sasitharan, S., The strength and dilatancy of sand. Canadian Geotechnical Journal, 29(3), 522-526, 1992.
  • Niedostatkiewicz, M., Lesniewska, D., Tejchman, J., Experimental Analysis of Shear Zone Patterns in Sand During Earth Pressure Problems using Particle Image Velocimetry. Strain, Vol 47, 218– 231, 2011.
  • Lesniewska, D., Muir Wood, D., Photoelastic and Photographic Study of a Granular Material. Geotechnique, Vol 61, No 7 605–611, 2011.
  • Pietrzak, M., Lesniewska, D., Failure evaluation in granular material retained by rigid wall in active mode. Studia Geotechnica et Mechanica, Vol. 34 No. 4, 2012.
  • Tehrani, S., Arshad, M.I., Prezzi, M., Salgado, R., Visualization of active mode of failure behind flexible walls under pure rotation using digital image correlation. Geo-Congress Technical Papers, GSP 234, ASCE, 2014.
  • White, D.J., Take, W.A., Bolton, M.D., Soil Deformation Measurement using particle image velocimetry (PIV) and photogrammetry. Geotechnique 53, No. 7, 619-631, 2003.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliği
Bölüm Makale
Yazarlar

Çağdaş Arda 0000-0001-9843-0532

Özer Çinicioğlu 0000-0001-9334-6956

Yayımlanma Tarihi 1 Eylül 2019
Gönderilme Tarihi 22 Şubat 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 30 Sayı: 5

Kaynak Göster

APA Arda, Ç., & Çinicioğlu, Ö. (2019). Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri. Teknik Dergi, 30(5), 9399-9420. https://doi.org/10.18400/tekderg.397658
AMA Arda Ç, Çinicioğlu Ö. Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri. Teknik Dergi. Eylül 2019;30(5):9399-9420. doi:10.18400/tekderg.397658
Chicago Arda, Çağdaş, ve Özer Çinicioğlu. “Kohezyonsuz Zeminlerin Tane Dağılım Ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri”. Teknik Dergi 30, sy. 5 (Eylül 2019): 9399-9420. https://doi.org/10.18400/tekderg.397658.
EndNote Arda Ç, Çinicioğlu Ö (01 Eylül 2019) Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri. Teknik Dergi 30 5 9399–9420.
IEEE Ç. Arda ve Ö. Çinicioğlu, “Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri”, Teknik Dergi, c. 30, sy. 5, ss. 9399–9420, 2019, doi: 10.18400/tekderg.397658.
ISNAD Arda, Çağdaş - Çinicioğlu, Özer. “Kohezyonsuz Zeminlerin Tane Dağılım Ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri”. Teknik Dergi 30/5 (Eylül 2019), 9399-9420. https://doi.org/10.18400/tekderg.397658.
JAMA Arda Ç, Çinicioğlu Ö. Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri. Teknik Dergi. 2019;30:9399–9420.
MLA Arda, Çağdaş ve Özer Çinicioğlu. “Kohezyonsuz Zeminlerin Tane Dağılım Ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri”. Teknik Dergi, c. 30, sy. 5, 2019, ss. 9399-20, doi:10.18400/tekderg.397658.
Vancouver Arda Ç, Çinicioğlu Ö. Kohezyonsuz Zeminlerin Tane Dağılım ve Şekil Özelliklerinin Aktif Göçme Yüzeyi Geometrisine Etkileri. Teknik Dergi. 2019;30(5):9399-420.