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Abstract—In last few years, to solve the problem of code
completion, using a language model such as LSTM to learn code
token sequences is the state-of-art method. However, tokens in
source code are more repetitive than words in natural languages.
For example, once a variable is declared in a program, it may
be used many times. Other elements such as generic types in
templates also occur repeatedly. It is important to capture token
repetition of code. For example, if usage patterns of variables
are not captured, there is little chance for a model trained
on one project to predict the name of an unseen variable in
another project correctly. Capturing token repetition of source
code is challenging because not only the repeated token but
also the place at where the repetition should happen must be
both decided at the same time. Hence, we propose a novel deep
neural model named REP to capture the general token repetition
of source code. The repetitions of code tokens are modeled as
edges connecting between repeated tokens on a graph. The REP
model is essentially a deep neural graph generation model. The
experiments indicate that the proposed model outperforms state-
of-arts in code completion.

Index Terms—language model, code completion, code recom-
mendation, code token repetition, deep neural graph generation

I. INTRODUCTION

In the past few years, language models have attracted the
attentions of researchers and achieved a great progress in
natural language processing tasks, such as machine translation
[1] and text generation [2]. A statistical language model is
a probability distribution over sequences of linguistic units
such as characters or words. With the rapid growth of open-
source code and the high-speed development of artificial
intelligence, applying natural language processing techniques
to source code has become a research direction. The problem
of code completion is difficult and attracts a lot of attentions
of researchers in the field of software engineering. Based
on the already written code, the system of code completion
can recommend the suitable code automatically for software
developers to improve the efficiency of software development.
Different from code synthesis based on natural languages [3],
[4] which requires an explicit intention of code described
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in natural languages, code completion is aimed at mining
and learning the hidden intention of code to recommend
suitable code automatically. Due to the predictability [5] of
source code, taking source code as natural languages to build
language models (n-gram, RNN or LSTM) to suggest code
has made great progress in the field of code completion
[6]–[11]. Among the previous works, deep learning models
such as RNN or LSTM have been proved to be effective.
In more subdivided fields of code completion, API usage
pattern learning also attracts attention of a large amount of
researchers [12], [13]. There are many differences between
natural languages and source code. Source code is more
regular than natural languages. There exist elements which
may occur more than once in one fragment of source code, for
example, variables or generic types in templates. Thus, taking
source code as natural languages directly is not enough.

Based on the observation that elements of source code are
highly repetitive, a new direction has been opened to capture
the token repetition of source code to improve the performance
of code completion. When predicting code, if an variable is
unseen before, there is little chance to predict that variable
correctly. If the usage pattern of an variable has been learned,
the place at where the variable will be occurred next time
can be decided. Then at next time, the name of that unseen
variable can be predicted correctly by copying the name of that
previously existed variable at the right place. Other elements
such as templates also have the property of token repetition.
For example, in Java languages, it is a common scenario to
get the element from ArrayList〈T 〉 and the following code:
ArrayList〈T 〉 arr = ...initialization...; T t = arr.get(0);
is common in many programs. Note that T could be the name
of any class. In a new project, if some strange class name
such as UnseenStrange is in placed of T and ArrayList〈T 〉
becomes ArrayList〈UnseenStrange〉, through learning the
repetitive patterns of source code, the right code:
UnseenStrange t = arr.get(0); can be generated.

It is difficult to learn the token repetition of source code.
There are two main challenges. The first challenge is that when
predicting next token, we need to judge whether the next token



should be the repetition of some previously existed token. The
second challenge is that if the next token is decided to be
the repetition of some previously existed token, we need to
decide which previously existed token should be repeated. If
a program is huge and contains a large amount of tokens, it
is hard to decide which token should be repeated. To address
the two challenges, we propose a novel REP model to learn
the token repetition of source code. The source code is parsed
into a token sequence. This token sequence can be viewed as
a linear graph as every token has an hidden incoming edge
from its previous token. If two tokens in a token sequence are
same, an edge is added between the repeated tokens. Then, a
complex graph can be generated based on a token sequence.
The extra added edge indicates the repetition of tokens. The
task of REP model is to learn the edge connection on the
generated graph. The experiments show that the proposed
model outperforms state-of-art baselines. In summary, the
contributions of this paper include:

1) A novel REP model is proposed to capture the general
token repetition of source code;

2) Evaluations on four data sets (total 29.15MB) indicate
that the proposed model outperforms the state-of-arts.

II. RELATED WORK

Models for code completion. The statistical language models
have been widely used in capturing patterns of source code to
solve the problem of code completion. In [5], source code was
parsed into lexical tokens and the n-gram model was applied
directly to suggest the next lexical token. In [14], a large
scale experiments was conducted by using n-gram model and
a visualization tool was provided to inspect the performance
of the language model for the task of code completion. In
SLAMC [6], based on basic n-gram model, associating code
lexical tokens with roles, data types and topics was one way to
improve the prediction accuracy. Cacheca [7] improved n-gram
model by caching the recently encountered tokens in local files
to improve the performance of basic n-gram model. Decision
tree learning was applied to code suggestion, based on this,
a decision tree model which integrates the basic n-gram [10]
was proposed for source code. The work [15] abstracted source
code into DSL and kept sampling and validating on that
specially designed DSL until the good code suggestion was
obtained. Deep learning techniques such as RNN, LSTM were
applied to code generation model [8] [9] [11] to achieve a
higher prediction accuracy. The work in [11] confirmed that
LSTM significantly outperforms other models for doing token-
level code suggestion. Given large amount of unstructured
code, deep language models such as LSTM or its variants are
the state-of-art solutions to the problem of code completion.
All works described above are trying to solve the general
code completion problem in which every token of code should
be predicted and completed based on the context in a fixed
or changeable length. There are also a lot of works paying
attention to the API completion problem. Common sequences
of API calls were captured with per-object n-grams in [12].
In [13], API usages was trained on graphs. Naive-Bayes was

integrated into n-gram model to suggest API patterns. The
migrations of API are studied in [16]. The completion of API
full qualified name is studied in [17].
Models for code synthesis. Another important research field
to use language models is code synthesis. In recent years,
translating text description into source code have achieved a
great success. Seq2Seq [18], Seq2Tree [19] and Tree2Tree
[20] models are proposed to handle the problem of code
synthesis. The models for code synthesis are all based on
the framework of neural machine translation. There are two
modules named encoding module and decoding module in
the framework of neural machine translation models. The
encoding module encodes source sentences (trees) into fixed
size vector. The decoding module decodes the fixed size vector
generated by encoding module into sequences or trees. As
discussed in [21], intuitively, Seq2Tree takes grammar of code
into consideration but is still based on the framework of
Seq2Seq. Although there are big differences between neural
code translation and code completion, the aim of the decoding
module in code synthesis is same as that of the language
model. Both the aims are to generate the suitable code. So
it is fair to compare our model with the decoding module in
code synthesis model. Traditional decoding module of neural
machine translation model uses standard LSTM directly, so
there is no need to compare. But the recently proposed tree
decoding module in Seq2Tree or Tree2Tree models deserves
to be investigated for the code completion task. The decoding
module in Tree2Tree model in most recent work [22] are
extracted and compared with our REP model. There exists
repetitiveness in the synthesized code. Our REP model could
be taken as the decoding module for all code synthesis models
directly. We will further investigate the performance of taking
REP model as the decoding module in code synthesis tasks
in the future work. On top of general code synthesis problems,
API synthesis is also studied in [3], [4]. In the research
fields of natural language processing, text summarization [23]
is an important problem which is related to synthesis. One
application of text summarization is to automatically generate
the title of an article based on the content of that article. In
source code processing, there is a similar problem: how to
generate the name of a function according to the content of that
function. This problem of function name generation has been
addressed by extreme summarization of source code based on
deep neural attention network in [24].
Models for code classification. For the problem of code
classification or the problem of identifying code similarity,
TreeNN [25], [26], TreeCNN [27], EQNET [28] or GNN
(Graph Neural Network) [29] have been proposed. There exists
huge differences between code classification problems and the
code generation problems.
Models for robustness. To make the language model more
robust, instead of improving the model structure directly, an-
other research direction is to use different sampling schedules
[30] or to generate adversarial examples [31] based on the
training data to improve the robustness of the model.
Models for capturing token repetition of code. By com-



paring the related works mentioned all above, as far as we
know, the REP model is the first deep neural model based
on graph to capture the general token repetition of source code
to help improve the solution to the problem of token-level code
completion. The newly proposed model is also the first model
to address problems of learning usage patterns of variables,
templates and cloned code when doing code completion.

III. PROBLEM FORMULATION

Traditional language model processes tokens (words) one
by one. The processing is based on a linear chain to handle
each token in a token sequence. The data (token sequence)
can be converted to the directed acyclic graph (DAG). Each
node in the graph has only one incoming edge from its
corresponding previous node. Such edge indicates the order
of occurrence of tokens in a token sequence and we give that
kind of edge a name CommonEdge. For example, if tokenn

has one incoming edge from tokenn−1, then tokenn should
occur instantly after tokenn−1. Then any token sequence
could be represented by a simple graph. Follow this idea,
to represent the repetition of tokens, we add an edge named
RepetitionEdge between the repeated two tokens. For exam-
ple, in a token sequence, if tokenm is same as tokenn where
m < n, the special designed directed edge RepetitionEdge is
added from tokenm to tokenn. To see whether a token tokenn

is repeated or not in a token sequence is just to see whether
there is an edge linked to token tokenn from some previously
existed token. Then, the problem of learning the general token
repetition of source code reduces to the problem of learning the
edge connection in a graph. The problem of code generation
(code completion) reduces to the graph generation problem. In
traditional language modelling, the edges between tokens do
not need to be explicitly modeled. In our setting, the patterns
of edge connections between tokens need to be explicitly
modeled and learned. An example is shown in Figure 1. The

Fig. 1: Graph for Code and its Token Repetition

circle in Figure 1 represents the token. The edges marked as
solid arrow (CommonEdge) show the order in which tokens
are processed in a token sequence. The repeated tokens are
connected by dashed arrow (RepetitionEdge). The REP
model is still based on the framework of language model
and can be taken as a complement to the language model.
Tokens in a token sequence are predicted one by one. For each
token, REP model additionally judge whether the currently
predicted token should be the repetition of some previously
existed token. As the language model may predict wrong
content (wrong variable names or wrong templates), REP
model could help correct the prediction through mixing the
patterns of code repetitiveness together. In this setting, the
REP model is designed to predict correctly the incoming
RepetitionEdge of each token.

Fig. 2: Complex Graph for Code and its Token Repetition

Note that, one token may have more than one incoming
edge if there exist two or more previous tokens with same
content as current token in a token sequence. This complex
situation is shown in Figure 2. Among all incoming edges
(RepetitionEdge), if one edge could be predicted correctly,
the prediction about the token repetition is right. So it is
absolutely unnecessary to predict correctly all edges of kind
RepetitionEdge. Learning to predict correctly one among
all edges of kind RepetitionEdge is enough. To make the
learning procedure easier, we could retain and learn only one
incoming RepetitionEdge. In fact, considering only one of
the all possible edges of RepetitionEdge not only meets the
needs about deciding the token repetition but also makes the
whole problem easier. Therefore, only the nearest two repeated
tokens are connected by an edge (RepetitionEdge). Formally,
for nth token tokenn, only the kth token tokenk connects to
tokenn where k is determined by

k = max{ i | tokeni == tokenn, i < n } (1)

The simplified graph corresponding to the graph in Figure 2
is shown in Figure 3. In Figure 3, only the edges connecting
between the nearest two repeated tokens are retained. By
removing unnecessary edges, now, every node has at most
one incoming RepetitionEdge making the problem concise.
When predicting next token, the whole problem of learning
token repetition of source code is further divided into two
sub-problems: 1. deciding whether there is a RepetitionEdge
connected to next token; 2. if it is determined that there must
be a RepetitionEdge connected to the next token, deciding
which token is the source token of that RepetitionEdge (the
next token should be same as the source token, in another
word, the source token is the token to be repeated). In addition

Fig. 3: Simplified Graph for Code and its Token Repetition

to the basic language model, learning the repetitiveness of
source code (learning extra edge connections between tokens)
can extract features of token repetition of source code to
recommend code. The ability to learn token repetition can help
us identify the usage patterns of variables, templates or cloned
code. Details will be described in next section.



Fig. 4: Overall Architecture

IV. PROPOSED METHOD

Given the token sequences parsed from source code, our
goal is to learn the general repetitiveness of tokens of source
code to improve the performance of existing state-of-art lan-
guage model. To accomplish this task, we design a novel
REP model to learn the repetitiveness of source code tokens.
Figure 4 demonstrates the overall architecture of our model.
The basic part of REP model is the LSTM model. The LSTM
model in REP generates the hidden feature vector (cell, h) for
each token. When predicting the edge connection for tokenn,
the Edge Recognizer takes the hidden feature vector (cell,
h) of tokenn and the hidden feature vector (cell, h) of each
previously existed token to compute the probability for each
possible incoming edge of tokenn. The higher the probability,
the more likely the edge should be added to the graph. For
tokenn, any edge of kind RepetitionEdge connecting from
one of the previous tokens to tokenn is the candidate incoming
RepetitionEdge of tokenn. All possible candidate incoming
edges (RepetitionEdge) of tokenn consist of edges of kind
RepetitionEdge connecting from all the previous tokens to
tokenn. For example, for token3, all candidate edges consists
of two edges: 1. RepetitionEdge connecting from token1

to token3; 2. RepetitionEdge connecting from token2 to
token3. The number of candidate edges (RepetitionEdge) is
n − 1 for tokenn. The Decision Maker is aimed at deciding
whether the most likely edge predicted by Edge Recognizer
should be really added or not. If the Decision Maker decides
that there should be no edges (RepetitionEdge) connecting to
the token being predicted, in this situation, the token predicted
by the algorithm of the traditional language model will be
taken as the final prediction result. If the Decision Maker
decides that the next code token should be the one previously
existed, in this situation, the source node (token) of the most
likely edge will be thought to repeat at the position currently
being predicted. So the token of the source of the recognized
most likely edge will be taken as the final prediction result.
To learn the general repetitiveness of source code tokens,
when predicting a token, we need to take all previously
existed tokens into consideration to decide whether or not
one of the previously existed tokens should be repeated. The
task becomes more and more challenging as the quantity of
already predicted tokens becomes larger and larger. Traditional
methods such as n-gram can only take limited quantity of
tokens into consideration. There is little chance for those
methods to discover the repetition of two tokens due to large

amount of other tokens between them. Deep learning methods
scale well to high dimensional domains and have strong
representational power. With the introducing of the deep neural
networks, learning the general repetitiveness over a long token
sequence becomes possible. In this subsection, we introduce
our REP model which is based on the deep neural network.

A. LSTM in REP Model
The REP model is based on the LSTM model. LSTM

model is applied to generate the state (cell and h) for every to-
ken in a sequence. Formally, the state generated for predicting
tokenn by LSTM is referred to as staten (celln and hn). In
rest of this section, the symbol statei (celli, hi) refers to the
state generated for predicting ith token tokeni by the LSTM.
Traditional language model based on LSTM model uses hn

to compute the probability distribution of all candidate tokens
to select the most likely token for tokenn. The LSTM and
its usage in traditional language model are omitted in this
section. Please refer to [32] for the details of the algorithm of
the traditional language model about how to use hn which is
generated by LSTM to compute the most likely token when
predicting tokenn. When predicting the edge connection for
tokenn, hn, hn−1 .. h1 are used for computing the probability
distribution of all candidate incoming edges of tokenn. Details
are shown in the following section.

B. Edge Recognizer in REP Model
Edge Recognizer is responsible for computing the prob-

ability distribution of all candidate incoming edges. Formal
definition is as follows. The edge connecting from tokenm to
tokenn where m < n is referred to as edge(m,n). In rest of
this paper, edge(x,y) refers to the RepetitionEdge connecting
from xth token tokenx to yth token tokeny . The probability
of edge(m,n) is computed by:

P (edge(m,n)) =
hT
m W hn

Z
(2)

In Equation 2, Z is the normalization factor computed by:

Z =

n−1∑
m=1

hT
m W hn (3)

The hm is in the statem (cellm, hm) generated for mth token
by LSTM. The hn is in the staten (celln, hn) generated for
nth token by LSTM. In rest of this section, hi is in the statei
(celli, hi) generated for ith token by LSTM. In Equation 2 and



3, W is the model parameter, hT
m is the transposition of hm.

The training and predicting are all based on the probability of
each candidate RepetitionEdge computed by Equation 2.

Training of Edge Recognizer. Remember that, in the
section of Problem Formulation, each code will be converted
into a token sequence, if tokenn is the repetition of some
previously existed token, there must be an incoming edge
of kind RepetitionEdge connecting to tokenn. The source
of that edge is the nearest previous token which is same as
tokenn. For tokenn, we use the symbol: nearn to refer to
the position of that nearest token which is same as tokenn.
In another word, what we mean is that the nearest token
(same as tokenn) is the nearnth token in the token sequence
(tokennearn ). According to the position of the source and
the target, the incoming RepetitionEdge connecting from
nearnth token to nth token is referred to as edge(nearn,n).
For tokenn, we define a symbol en ∈ {0, 1} which indicates
whether there is an incoming RepetitionEdge connecting to
tokenn. If en is 1, this indicates that there is an incoming
RepetitionEdge for tokenn. If en is 0, this indicates that
there is no incoming RepetitionEdge for tokenn. If there
is an incoming RepetitionEdge for tokenn in training ex-
amples, the source (token) of that incoming RepetitionEdge
is referred to as tokennearn which is the nearnth token in
the token sequence. The symbol nearn refers to the position
of the previously existed token which is nearest to tokenn

and is same as tokenn. To learn the edge connections in
training examples, we follow the framework of Maximum
Likelihood Estimation approaches: the probabilities of actually
existed edges of kind RepetitionEdge in training examples
should be as high as possible. Thus, the probability of the
incoming RepetitionEdge: edge(nearn,n) (if there is one) for
tokenn in training examples should be as high as possible.
This is equivalent to minimize the following loss function.
If there is no incoming RepetitionEdge for tokenn, then
nearn, edge(nearn,n) and P(edge(nearn,n)) will be default
meaningless values. This form avoids the using of condition
judgment such as if-else to judge whether the incoming edge
is existed or not and takes advantage of the high performance
of GPU. With the probability of each edge, the loss function
could be defined as (assuming that the quantity of code nodes
in a data set is N ):

LER =

N∑
n=1

−log(P (edge(nearn,n))) ∗ en (4)

The symbol en indicates whether tokenn has an incoming
RepetitionEdge. If there is no incoming RepetitionEdge,
en is 0 and the final loss will exclude the loss for non-
existent edges. The training objective of Edge Recognizer is
to minimize the loss function 4.

Usage of Edge Recognizer in Prediction Phase. The edges
with highest probabilities computed by Equation 2 are most
likely to be added to the graph. In another word, the source
of the edge with high probability has a high chance to be
repeated. When predicting tokenn, for the candidate incoming

RepetitionEdge with the kth largest probability, we use the
symbol: srck to refer to the position of the source of that kth
most likely edge. In another word, the source of the kth most
likely RepetitionEdge when predicting tokenn is the srckth
token (tokensrck ). If k = 1, we can offer another formal
definition of src1 when predicting tokenn:

src1 = argmax
i

P (edge(i,n)) (5)

When predicting tokenn, if Decision Maker (described in
the following subsection) decides that the tokenn should be
the repetition of some previously existed token and top-k
candidates are needed, tokensrc1 (the source token of the edge
with highest probability), tokensrc2 (the source token of the
edge with the second highest probability), ... and tokensrck

(the source token of the edge with kth highest probability) will
be taken as the final recommendation. The top-k accuracy is
computed by judging whether the desired tokenn exists in the
candidates: tokensrc1 , tokensrc2 , ... and tokensrck .

C. Decision Maker in REP Model
The task of Decision Maker is to decide whether the

edge with the highest probability computed by Edge Rec-
ognizer should be really added to the graph or not. When
predicting tokenn, Decision Maker is to decide whether there
should be an edge of kind RepetitionEdge connecting to
tokenn. In the phase of predicting, the available information
about RepetitionEdge is the probability of each candidate
RepetitionEdge computed by Edge Recognizer for tokenn.
The probability that tokenn has an incoming RepetitionEdge
(tokenn is the repetition of some previously existed token) is
computed by:

P (tokenn is repeated) =
hT
src1 V1 hn

hT
src1 V1 hn + hT

src1 V2 hn
(6)

In the above equation, hsrc1 is the h in state (cell, h)
generated for the token at the position src1 (src1th token)
and hT

src1 is the transposition of hsrc1 . The src1 is defined in
Equation 5. V1 and V2 are model parameters.

Training of Decision Maker. If there is an incoming
edge in training example for tokenn, P (tokenn is repeated)
defined in Equation 6 should be maximized. Otherwise, the
value: 1−P (tokenn is repeated) should be maximized. This
corresponds to minimize the following loss. The loss function
of Decision Maker is defined as:

LDM =

N∑
n=1

(−log(P (tokenn is repeated) ∗ en

−log(1− P (tokenn is repeated)) ∗ (1− en)))

(7)

The training objective of Decision Maker is to minimize the
loss function 7. The final loss L = LER + LDM . To minimize
the final loss L is equivalent to minimize LER and LDM

separately.
Usage of Decision Maker in Prediction Phase. When

predicting tokenn, if P(tokenn is repeated) is greater or
equal to 0.5, the recommendation result generated by Edge



Recognizer (described in the previous subsection) should be
taken as the final result. Otherwise, if P(tokenn is repeated)
is less than 0.5, the prediction result generated by the algorithm
[32] of the traditional language model will be taken as the final
prediction result.

D. Advanced REP Model

In previous subsections, there is only one LSTM model
described in REP . To improve the expressiveness of the REP
model, we could use two LSTM models, one for computing
probabilities of edges in REP , one for computing the predic-
tion result of the standard language model. In another word,
the LSTM used for computing the prediction result of standard
language model is the LSTM isolated from the LSTM model
described in REP . Also, the embeddings of tokens involved in
those two LSTM models could be isolated. In conclusion, we
use one LSTM model as the standard language model and use
another LSTM model to compute the probabilities of edges in
REP . By doing so, the parameters have doubled in size and
the performance of the REP model could be further improved.
Actually, the REP model used in experiments is the advanced
version just described in this subsection.

V. IMPLEMENTATION

Source code [33] which contains all data sets and all
implementations of all models mentioned in experiments has
been public. The implementation of the model is based on the
deep learning platform TensorFlow. Apart from the parameters
of the LSTM used in REP model, the other parameters of
REP model are W in equation 2 and V1, V2 in equation
6. Adam optimizer in TensorFlow is used to automatically
decide learning rate and momentum in training phase. The
gradient is clipped by global norm. Parameters about clipping
norm are set to default values offered by TensorFlow. The
representation size (alias as embedding size or feature size)
for one token is 128. Once the embedding size for one token
is decided, sizes of all other parameters which participate in
the calculation with the embedding of tokens can be decided
successively. All models keep training until the accuracy on
validation set does not exceed the optimal value for 50 epochs.
All the training examples are trained one by one. The models
are running on the computer with the setting: Windows 10 64
bit OS, Intel i7-6850k CPU, 32G memory and one Geforce
GTX 1080 Ti GPU. Every function in source code will be
extracted and tested. The code completion system will start
at the beginning of a function to try to complete each token
of the function one by one. The accuracy is the average of
the prediction accuracy of each token of each function in test
set. To generate tokens for the source code, some works [5]
parse the code into lexical units through splitting the code by
white space or other predefined separators such as +, (, : or ;.
The implementation of such parser may vary greatly. Different
separators in use lead to different token sequence of source
code. Thus, to make the token generation for code unified, the
token sequence is generated in the following steps. The code is
parsed into the abstract syntax tree (AST) through Eclipse JDT

at first. Then, the AST is traversed in pre-order. The content
of each encountered node is pushed back onto a sequence.
Now, the token sequence has been generated. Token repetition
learning is also based on the token sequence generated in this
way. Generating token sequence based on AST could also
make it fair to compare the sequential model such as LSTM
with tree models such as Tree2Tree model as the contents to
be predicted are same in this setting.

VI. EXPERIMENT

Without loss of generality, the most widely used program-
ming language: Java is chosen to conduct experiments. Four
data sets are provided for evaluations. For each data set,
the source code in that data set is divided into training set,
validation set and test set in the proportions 60%, 15%, 25%.
Follow the one billion word benchmark [34], similarly, the
0.15% least frequently occurred code tokens in our training
set, all unseen tokens in validation set and test set are marked
as UNK.

Data Sets. Famous open-source projects are used in exper-
iments. As there are small functions which contain only one
or two statements in those projects, we do some filtering to
the code. The filtering steps are as follows: 1. Give each Java
file a score (to get the score, divide the number of all tokens
in all functions in the java file by the number of all functions
in that java file); 2. Sort Java files according to the score from
large to small and extract the first 85% Java files to blend into
a data set. Details are shown in Table I. The fourth column
headed by Vocabulary in Table I means the total number of
unique tokens on the data set. The symbol DS refers to data
set. For example, the DS1 refers to data set 1. The original
size of Apache Lucene is 98.8MB and is too huge, so only
the core module and analysis-common module are extracted
into the data set.

TABLE I: Data Sets

From Project Size Vocabulary
DS1 Log4J 1.76MB 6455
DS2 Maven 3.25MB 10516
DS3 FindBugs (GitHub version) 8.54MB 27573
DS4 Lucene (core & analysis-common) 15.6MB 55244

Research Questions. To demonstrate the ability of the
proposed model, one research question is answered:

RQ1: Could REP model achieves better prediction accu-
racy than other state-of-art methods under all the data sets?

To evaluate the performance of our model, the state-of-art
baselines: LSTM and tree decoding module in Tree2Tree [22]
are compared with the REP model. The tree decoding module
in other Tree2Tree models [35] is just LSTM model with
silghtly changes (one LSTM for decoding content of node, one
LSTM for decoding the tree structure of node) and is irrelevant
to this research because we only care about predicting the
content of node in this research. Table II shows the prediction
accuracy of different models evaluated on the test set of
each data set. The top-k accuracy (value is in percentage,
% is omitted to save the space) is computed for evaluating



TABLE II: Evaluation Result

LSTM Tree2Tree REP
top1 top3 top6 top10 mrr enpy top1 top3 top6 top10 mrr enpy top1 top3 top6 top10 mrr enpy

DS1 45.4 59.3 63.7 66.3 0.53 6.7 34.7 54.3 61.5 64.7 0.45 5.9 48.6 63.0 68.1 70.9 0.57 2.8
DS2 48.0 60.7 65.2 67.7 0.55 6.8 36.7 54.4 59.8 63.0 0.46 5.8 52.6 66.3 71.2 73.8 0.60 3.3
DS3 34.5 49.2 55.2 58.6 0.43 7.7 31.8 50.0 56.4 59.2 0.39 6.9 44.7 59.9 66.3 69.9 0.53 5.8
DS4 48.9 63.7 69.8 73.3 0.57 3.6 40.0 58.0 65.1 69.3 0.50 4.0 53.9 69.1 75.3 78.6 0.62 1.7

the model performance. When predicting next node, we rank
all candidate tokens according to probabilities (computed by
model) from large to small. The token with higher probability
has smaller rank. The token with the highest probability has
rank 1. The value in column headed with mrr is the average
of the reciprocal of rank of the token. This metric indicts the
overall prediction performance of the model. The larger the
mrr, the better the performance of the model. The enpy headed
column shows the entropy (log value of the perplexity) of the
model. The smaller the entropy, the better is the model.

As can be seen from the data, the REP model outperforms
all other state-of-art models in all 4 data sets. Especially for
the top-1 accuracy, REP model achieves averagely 17.2%
improvement compared to LSTM, achieves averagely 39.7%
improvement compared to Tree2Tree. From the result, we can
conclude that capturing the token repetition of source code can
improve existing LSTM model which has solved the problem
of gradient vanishing and gradient exploding to capture the
long term memory. Source code is diverse. After randomly
checking files in test set and training set, we have discovered
that there is little chance for the exact same code appears in
both the training set and test set. As argued in [30], if some
sub-sequences or patterns in the context are unseen in training
data, the discrepancy between training and inference could
cause the system fail to predict the right result. This problem
is named as exponential bias and REP model could solve
that problem to some extent.

The tree decoding module in Tree2Tree [22] performs worse
than LSTM. From this experiment, tree decoding module in
Tree2Tree is strongly dependent on the attention mechanism
used in its encoding module. Without the cooperation from
the encoding module, the performance of a single decoding
module is worse than standard LSTM. The reason has been
carefully analyzed. In Tree2Tree model [22], trees need to
be converted into binary trees. Converting a general tree to
a binary tree needs to add more nodes makes the prediction
task more difficult. The decoding module decodes the binary
tree in the way that the left child node and right child node
of one node will be predicted at the same time. This decoding
procedure indicates that the right child is predicted without
the information of the left child and vice versa. In the mean
while, LSTM model predicts one by one meaning that the
right child is predicted with the information of the left child
(according to pre-order traversal of tree). The less use of the
context information causes the lower prediction accuracy of
tree decoding module in Tree2Tree [22]. On the other hand, the
less use of the context could reduce the impact of the unseen
data in context. When encountering a large amount of unseen

data, Tree2Tree could gain good generalization ability. That is
why Tree2Tree performs better than LSTM in entropy on the
first three data sets. Even so, Tree2Tree still performs worse
than REP in entropy. As can be seen from the entropy (log
value of the perplexity), REP achieves nearly half the entropy
compared to that of other models. This experimental result is
dramatically encouraging. Thus, by taking all conditions into
account, REP outperforms other models.

RQ2: In which scenarios can REP model achieve better
results than other models and what features of scenarios bring
REP model to the better performance?

In the investigation of the prediction result of the exper-
iment, we discover that REP model is good at predicting
unseen data especially for unseen variable names or unseen
type names. In our setting, unseen token in validation set
or test set will be replaced with UNK. Both LSTM model
and Tree2Tree model perform badly in distinguishing between
UNK and other tokens when the number of tokens is huge.
In REP model, by recognizing the hidden relationships of
token repetition, another point of view could be offered to
us to decide which is the most likely token for the next.
If the model can confirm that the next token should be the
repetition of some previously existed token, we could take the
previously existed token as the final prediction result no matter
the previously existed token is UNK or other tokens. Note that,
for a token sequence of which the length is often less than
1000, the number of the previously existed tokens is at most
1000. In this setting, the REP model only needs to distinguish
between at most 1000 tokens to decide the token repetition. In
the meanwhile, for large projects, the number of total tokens
is often greater than 6000, which means that the standard
LSTM-based language model needs to distinguish between at
least 6000 tokens to decide which is the most likely token for
the next. Obviously, the task of recognizing token repetition
is much easier than the task of the standard LSTM-based
language model. That is the one factor why REP model could
perform better than standard LSTM-based language model.

Limitation and Future Work. In experiments, only four
Java projects are used, more projects could make the results
of experiments more solid. In all projects of different sizes,
the proposed model has achieved better results than all other
models, which can prove the effectiveness of the model to
a certain extent. The proposed method is not limited to the
Java language and can be extended to other languages such
as Python and C++. The extra work needed to do is to
design Python parser or C++ parser to parse the code into
the corresponding token sequence. The proposed model could
be applied to the generated token sequence. In the future,



the performance of the proposed model could be further
investigated on different languages such as Python or C++.
If the code corpus is large, there would be a lot of tokens.
The existence of a large number of tokens can cause trouble
to apply this technique to industrial scenarios. The techniques
which are designed to minimize the number of tokens could
be applied to further reduce the total tokens to improve the
model performance.

VII. CONCLUSION

In this paper, a novel REP model is proposed to capture the
general token repetition of source code to improve the predic-
tion accuracy of standard language model. The experimental
results on huge data sets confirm that capturing the general
token repetition of source code by REP model successfully
improves current methods and makes a step forward for the
problem of code completion.
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