Research Article
BibTex RIS Cite
Year 2018, Volume: 4 Issue: 6, 2451 - 2463, 29.09.2018
https://doi.org/10.18186/thermal.465684

Abstract

References

  • [1] Yin, J. M., Bullard, C. W., Hrnjak, P. S. (2002). Single-phase pressure drop measurements in a microchannel heat exchanger. Heat Transfer Engineering, 23(4), 3-12.
  • [2] Bowers, M. B., Mudawar, I. (1994). Two-phase electronic cooling using mini-channel and micro-channel heat sinks: Part 2-Flow rate and pressure drop constraints. Journal of Electronic Packaging, 116(4), 298-305.
  • [3] Daghighi, Y. (2015). Microfluidic Technology and its Biomedical Applications. Journal of Thermal Engineering (JTEN), 1(7), 621-626.
  • [4] Shah, R. K., Sekulic, D. P. (2003). Fundamentals of heat exchanger design. John Wiley & Sons.
  • [5] Hesselgreaves, J. E., Law, R., Reay, D. (2016). Compact heat exchangers: selection, design and operation. Butterworth-Heinemann.
  • [6] Pfund, D., Rector, D., Shekarriz, A., Popescu, A., Welty, J. (2000). Pressure drop measurements in a microchannel. American Institute of Chemical Engineers. AIChE Journal, 46(8), 1496.
  • [7] Xu, B., Ooti, K. T., Wong, N. T., Choi, W. K. (2000). Experimental investigation of flow friction for liquid flow in microchannels. International Communications in Heat and Mass Transfer, 27(8), 1165-1176.
  • [8] Qu, W., Mudawar, I. (2002). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. International Journal of Heat and Mass Transfer, 45(12), 2549-2565.
  • [9] Steinke, M. E., Kandlikar, S. G. (2006). Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences, 45(11), 1073-1083.
  • [10] Mirmanto, M. (2013). Single-phase flow and flow boiling of water in horizontal rectangular microchannels (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses).
  • [11] Özdemir, M. R. Effect of aspect ratio on single-phase flow in microchannels (2016). ENTECH’16 IV. International Energy Technologies Conference, TURKEY, 15–15 December 2016. DAKAM Conference Series.
  • [12] Sahar, A. M., Wissink, J., Mahmoud, M. M., Karayiannis, T. G., Ishak, M. S. A. (2017). Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel. Applied Thermal Engineering.
  • [13] Zhang, J., Diao, Y. H., Zhao, Y. H., Zhang, Y. N. (2014). An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube. Applied Thermal Engineering, 65(1), 209-218.
  • [14] Shen, S., Xu, J. L., Zhou, J. J., Chen, Y. (2006). Flow and heat transfer in microchannels with rough wall surface. Energy Conversion and Management, 47(11), 1311-1325.
  • [15] Gamrat, G., Favre-Marinet, M., Le Person, S., Baviere, R., Ayela, F. (2008). An experimental study and modelling of roughness effects on laminar flow in microchannels. Journal of Fluid Mechanics, 594, 399-423.
  • [16] Warrier, G. R., Dhir, V. K., Momoda, L. A. (2002). Heat transfer and pressure drop in narrow rectangular channels. Experimental Thermal and Fluid Science, 26(1), 53-64.
  • [17] Lee, J., Mudawar, I. (2005). Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I––pressure drop characteristics. International Journal of Heat and Mass Transfer, 48(5), 928-940.
  • [18] Lee, P. S., Garimella, S. V. (2008). Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays. International Journal of Heat and Mass Transfer, 51(3), 789-806.
  • [19] Tong, W., Bergles, A. E., Jensen, M. K. (1997). Pressure drop with highly subcooled flow boiling in small-diameter tubes. Experimental Thermal and Fluid Science, 15(3), 202-212.
  • [20] Tran, T. N., Chyu, M. C., Wambsganss, M. W., France, D. M. (2000). Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. International Journal of Multiphase Flow, 26(11), 1739-1754.
  • [21] Cebi, A., Celen, A., Donmez, A., Karakoyun, Y., Celen, P., Cellek, M.S., Dalkilic, A.S., Taner, T., Wongwises, S. (2018). A Review of Flow Boiling in Mini and Microchannels for Enhanced Geometries. Journal of Thermal Engineering (JTEN), 4(3), 2037-2074.
  • [22] Mahmoud, M. M., Karayiannis, T. G., Kenning, D. B. R. (2013). Flow Boiling In Small To Microdiameter Tubes. Emerging Topics in Heat Transfer: Enhancement and Heat Exchangers, 24, 321.
  • [23] Singh, S. G., Kulkarni, A., Duttagupta, S. P., Puranik, B. P., Agrawal, A. (2008). Impact of aspect ratio on flow boiling of water in rectangular microchannels. Experimental Thermal and Fluid Science, 33(1), 153-160.
  • [24] Markal, B., Aydin, O., Avci, M. (2016). Effect of aspect ratio on saturated flow boiling in microchannels. International Journal of Heat and Mass Transfer, 93, 130-143.
  • [25] Shuai, J., Kulenovic, R., Groll, M. (2003, January). Heat transfer and pressure drop for flow boiling of water in narrow vertical rectangular channels. In ASME 2003 1st International Conference on Microchannels and Minichannels (pp. 667-673). American Society of Mechanical Engineers.
  • [26] Mahmoud, M. (2011). Flow boiling of R134a in vertical mini-diameter tubes (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses).
  • [27] Harirchian, T., Garimella, S. V. (2009). The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. International Journal of Multiphase Flow, 35(10), 904-913.
  • [28] Soupremanien, U., Le Person, S., Favre-Marinet, M., Bultel, Y. (2011). Influence of the aspect ratio on boiling flows in rectangular mini-channels. Experimental thermal and fluid science, 35(5), 797-809.
  • [29] Collier, J. G., Thome, J. R. (1994). Convective boiling and condensation. Clarendon Press.
  • [30] Lockhart, R. W., Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog, 45(1), 39-48.
  • [31] Chisholm, D. (1967). A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. International Journal of Heat and Mass Transfer, 10(12), 1767-1778.
  • [32] Zhang, M., Webb, R. L. (2001). Correlation of two-phase friction for refrigerants in small-diameter tubes. Experimental Thermal and Fluid Science, 25(3), 131-139.
  • [33] Kawahara, A., Chung, P. Y., Kawaji, M. (2002). Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. International Journal of Multiphase Flow, 28(9), 1411-1435.
  • [34] Qu, W., Mudawar, I. (2003). Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer, 46(15), 2737-2753.
  • [35] Wen, D. S., Yan, Y., Kenning, D. B. R. (2004). Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficients and correlations. Applied Thermal Engineering, 24(8), 1207-1223.
  • [36] Ribatski, G. (2013). A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Experimental Heat Transfer, 26(2-3), 198-246.
  • [37] Ribatski, G., Wojtan, L., Thome, J. R. (2006). An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Experimental Thermal and Fluid Science, 31(1), 1-19.
  • [38] Qi, S. L., Zhang, P., Wang, R. Z., Xu, L. X. (2007). Flow boiling of liquid nitrogen in micro-tubes: Part I–The onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop. International journal of heat and mass transfer, 50(25), 4999-5016.
  • [39] Agostini, B., Revellin, R., Thome, J. R., Fabbri, M., Michel, B., Calmi, D., Kloter, U. (2008). High heat flux flow boiling in silicon multi-microchannels–Part III: Saturated critical heat flux of R236fa and two-phase pressure drops. International Journal of Heat and Mass Transfer, 51(21), 5426-5442.
  • [40] Mishima, K., Hibiki, T. (1996). Some characteristics of air-water two-phase flow in small diameter vertical tubes. International journal of multiphase flow, 22(4), 703-712.
  • [41] Yu, W., France, D. M., Wambsganss, M. W., Hull, J. R. (2002). Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. International Journal of Multiphase Flow, 28(6), 927-941.
  • [42] Zhang, W., Hibiki, T., Mishima, K. (2010). Correlations of two-phase frictional pressure drop and void fraction in mini-channel. International Journal of Heat and Mass Transfer, 53(1), 453-465.
  • [43] Boure, J. A., Bergles, A. E., Tong, L. S. (1973). Review of two-phase flow instability. Nuclear Engineering and Design, 25(2), 165-192.
  • [44] Ruspini, L. C., Marcel, C. P., Clausse, A. (2014). Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer, 71, 521-548.
  • [45] Wu, H. Y., Cheng, P. (2003). Visualization and measurements of periodic boiling in silicon microchannels. International Journal of Heat and Mass Transfer, 46(14), 2603-2614.
  • [46] Steinke, M. E., Kandlikar, S. G. (2004). Control and effect of dissolved air in water during flow boiling in microchannels. International Journal of Heat and Mass Transfer, 47(8), 1925-1935.
  • [47] Hetsroni, G., Mosyak, A., Pogrebnyak, E., Segal, Z. (2005). Explosive boiling of water in parallel micro-channels. International Journal of Multiphase Flow, 31(4), 371-392.
  • [48] Bergles, A. E., Kandlikar, S. G. (2003, January). On the nature of critical heat flux in microchannels. In ASME 2003 International Mechanical Engineering Congress and Exposition (pp. 701-707). American Society of Mechanical Engineers.
  • [49] Gedupudi, S., Karayiannis, T. G., Kenning, D. B. R. (2009). Modelling pressure fluctuations during flow boiling in microchannels with inlet compressibility and resistance.
  • [50] Gedupudi, S., Kenning, D. B., Karayiannis, T. G. (2009). 1-D modelling of pressure fluctuations due to confined bubble growth during flow boiling in a microchannel.
  • [51] Gedupudi, S., Zu, Y. Q., Karayiannis, T. G., Kenning, D. B. R., Yan, Y. Y. (2011). Confined bubble growth during flow boiling in a mini/micro-channel of rectangular cross-section Part I: Experiments and 1-D modelling. International Journal of Thermal Sciences, 50(3), 250-266.
  • [52] Kandlikar, S. G. (2006). Nucleation characteristics and stability considerations during flow boiling in microchannels. Experimental Thermal and Fluid Science, 30(5), 441-447.
  • [53] Balasubramanian, K., Jagirdar, M., Lee, P. S., Teo, C. J., Chou, S. K. (2013). Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels. International journal of heat and mass transfer, 66, 655-671.
  • [54] Qu, W., Mudawar, I. (2002, January). Transport phenomena in two-phase micro-channel heat sinks. In ASME 2002 International Mechanical Engineering Congress and Exposition (pp. 135-147). American Society of Mechanical Engineers.
  • [55] Kandlikar, S. G., Kuan, W. K., Willistein, D. A., Borrelli, J. (2006). Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 128(4), 389-396.
  • [56] Koşar, A., Kuo, C. J., Peles, Y. (2006). Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. Journal of Heat Transfer, 128(3), 251-260.
  • [57] Kuan, W. K., Kandlikar, S. G. (2007). Experimental study on the effect of stabilization on flow boiling heat transfer in microchannels. Heat Transfer Engineering, 28(8-9), 746-752.
  • [58] Kuo, C. J., Peles, Y. (2008). Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. Journal of Heat Transfer, 130(7), 072402.
  • [59] Wang, G., Cheng, P., Bergles, A. E. (2008). Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat and Mass Transfer, 51(9), 2267-2281. [60] Kuo, C. J., Peles, Y. (2009). Pressure effects on flow boiling instabilities in parallel microchannels. International Journal of Heat and Mass Transfer, 52(1), 271-280.
  • [61] Zhang, T., Tong, T., Chang, J. Y., Peles, Y., Prasher, R., Jensen, M. K., Phelan, P. (2009). Ledinegg instability in microchannels. International Journal of Heat and Mass Transfer, 52(25), 5661-5674.
  • [62] Tuo, H., Hrnjak, P. (2013). New approach to improve performance by venting periodic reverse vapor flow in microchannel evaporator. international journal of refrigeration, 36(8), 2187-219.

A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS

Year 2018, Volume: 4 Issue: 6, 2451 - 2463, 29.09.2018
https://doi.org/10.18186/thermal.465684

Abstract

This study presents a comprehensive
review on single and two-phase pressure drop characteristics and flow boiling
instabilities in microchannels to outline the discrepancies in the literature.
The effect of mass flux, heat flux, experimental conditions, channel
geometrical parameters (hydraulic diameter, aspect ratio etc.) was surveyed
critically over a broad range of literature studies including the past and
recent researches. Additionally, conventional and micro-scale pressure drop
correlations are discussed. This study showed that the continuum theory is
applicable for single-phase pressure drop applications with some
considerations. Also, the two-phase pressure drop in micro-scale was found to
have similar characteristics with conventional-scale channels. On the other
hand, flow boiling instability is one of the important issues in microchannel
heat exchangers. Flow boiling instabilities affect the system performance and
may cause system failures. Therefore, unstable
flow boiling conditions were identified in this paper for a reliable design of
micro heat exchangers. 

References

  • [1] Yin, J. M., Bullard, C. W., Hrnjak, P. S. (2002). Single-phase pressure drop measurements in a microchannel heat exchanger. Heat Transfer Engineering, 23(4), 3-12.
  • [2] Bowers, M. B., Mudawar, I. (1994). Two-phase electronic cooling using mini-channel and micro-channel heat sinks: Part 2-Flow rate and pressure drop constraints. Journal of Electronic Packaging, 116(4), 298-305.
  • [3] Daghighi, Y. (2015). Microfluidic Technology and its Biomedical Applications. Journal of Thermal Engineering (JTEN), 1(7), 621-626.
  • [4] Shah, R. K., Sekulic, D. P. (2003). Fundamentals of heat exchanger design. John Wiley & Sons.
  • [5] Hesselgreaves, J. E., Law, R., Reay, D. (2016). Compact heat exchangers: selection, design and operation. Butterworth-Heinemann.
  • [6] Pfund, D., Rector, D., Shekarriz, A., Popescu, A., Welty, J. (2000). Pressure drop measurements in a microchannel. American Institute of Chemical Engineers. AIChE Journal, 46(8), 1496.
  • [7] Xu, B., Ooti, K. T., Wong, N. T., Choi, W. K. (2000). Experimental investigation of flow friction for liquid flow in microchannels. International Communications in Heat and Mass Transfer, 27(8), 1165-1176.
  • [8] Qu, W., Mudawar, I. (2002). Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. International Journal of Heat and Mass Transfer, 45(12), 2549-2565.
  • [9] Steinke, M. E., Kandlikar, S. G. (2006). Single-phase liquid friction factors in microchannels. International Journal of Thermal Sciences, 45(11), 1073-1083.
  • [10] Mirmanto, M. (2013). Single-phase flow and flow boiling of water in horizontal rectangular microchannels (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses).
  • [11] Özdemir, M. R. Effect of aspect ratio on single-phase flow in microchannels (2016). ENTECH’16 IV. International Energy Technologies Conference, TURKEY, 15–15 December 2016. DAKAM Conference Series.
  • [12] Sahar, A. M., Wissink, J., Mahmoud, M. M., Karayiannis, T. G., Ishak, M. S. A. (2017). Effect of Hydraulic Diameter and Aspect Ratio on Single Phase Flow and Heat Transfer in a Rectangular Microchannel. Applied Thermal Engineering.
  • [13] Zhang, J., Diao, Y. H., Zhao, Y. H., Zhang, Y. N. (2014). An experimental study of the characteristics of fluid flow and heat transfer in the multiport microchannel flat tube. Applied Thermal Engineering, 65(1), 209-218.
  • [14] Shen, S., Xu, J. L., Zhou, J. J., Chen, Y. (2006). Flow and heat transfer in microchannels with rough wall surface. Energy Conversion and Management, 47(11), 1311-1325.
  • [15] Gamrat, G., Favre-Marinet, M., Le Person, S., Baviere, R., Ayela, F. (2008). An experimental study and modelling of roughness effects on laminar flow in microchannels. Journal of Fluid Mechanics, 594, 399-423.
  • [16] Warrier, G. R., Dhir, V. K., Momoda, L. A. (2002). Heat transfer and pressure drop in narrow rectangular channels. Experimental Thermal and Fluid Science, 26(1), 53-64.
  • [17] Lee, J., Mudawar, I. (2005). Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I––pressure drop characteristics. International Journal of Heat and Mass Transfer, 48(5), 928-940.
  • [18] Lee, P. S., Garimella, S. V. (2008). Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays. International Journal of Heat and Mass Transfer, 51(3), 789-806.
  • [19] Tong, W., Bergles, A. E., Jensen, M. K. (1997). Pressure drop with highly subcooled flow boiling in small-diameter tubes. Experimental Thermal and Fluid Science, 15(3), 202-212.
  • [20] Tran, T. N., Chyu, M. C., Wambsganss, M. W., France, D. M. (2000). Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development. International Journal of Multiphase Flow, 26(11), 1739-1754.
  • [21] Cebi, A., Celen, A., Donmez, A., Karakoyun, Y., Celen, P., Cellek, M.S., Dalkilic, A.S., Taner, T., Wongwises, S. (2018). A Review of Flow Boiling in Mini and Microchannels for Enhanced Geometries. Journal of Thermal Engineering (JTEN), 4(3), 2037-2074.
  • [22] Mahmoud, M. M., Karayiannis, T. G., Kenning, D. B. R. (2013). Flow Boiling In Small To Microdiameter Tubes. Emerging Topics in Heat Transfer: Enhancement and Heat Exchangers, 24, 321.
  • [23] Singh, S. G., Kulkarni, A., Duttagupta, S. P., Puranik, B. P., Agrawal, A. (2008). Impact of aspect ratio on flow boiling of water in rectangular microchannels. Experimental Thermal and Fluid Science, 33(1), 153-160.
  • [24] Markal, B., Aydin, O., Avci, M. (2016). Effect of aspect ratio on saturated flow boiling in microchannels. International Journal of Heat and Mass Transfer, 93, 130-143.
  • [25] Shuai, J., Kulenovic, R., Groll, M. (2003, January). Heat transfer and pressure drop for flow boiling of water in narrow vertical rectangular channels. In ASME 2003 1st International Conference on Microchannels and Minichannels (pp. 667-673). American Society of Mechanical Engineers.
  • [26] Mahmoud, M. (2011). Flow boiling of R134a in vertical mini-diameter tubes (Doctoral dissertation, Brunel University School of Engineering and Design PhD Theses).
  • [27] Harirchian, T., Garimella, S. V. (2009). The critical role of channel cross-sectional area in microchannel flow boiling heat transfer. International Journal of Multiphase Flow, 35(10), 904-913.
  • [28] Soupremanien, U., Le Person, S., Favre-Marinet, M., Bultel, Y. (2011). Influence of the aspect ratio on boiling flows in rectangular mini-channels. Experimental thermal and fluid science, 35(5), 797-809.
  • [29] Collier, J. G., Thome, J. R. (1994). Convective boiling and condensation. Clarendon Press.
  • [30] Lockhart, R. W., Martinelli, R. C. (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem. Eng. Prog, 45(1), 39-48.
  • [31] Chisholm, D. (1967). A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. International Journal of Heat and Mass Transfer, 10(12), 1767-1778.
  • [32] Zhang, M., Webb, R. L. (2001). Correlation of two-phase friction for refrigerants in small-diameter tubes. Experimental Thermal and Fluid Science, 25(3), 131-139.
  • [33] Kawahara, A., Chung, P. Y., Kawaji, M. (2002). Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel. International Journal of Multiphase Flow, 28(9), 1411-1435.
  • [34] Qu, W., Mudawar, I. (2003). Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. International Journal of Heat and Mass Transfer, 46(15), 2737-2753.
  • [35] Wen, D. S., Yan, Y., Kenning, D. B. R. (2004). Saturated flow boiling of water in a narrow channel: time-averaged heat transfer coefficients and correlations. Applied Thermal Engineering, 24(8), 1207-1223.
  • [36] Ribatski, G. (2013). A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Experimental Heat Transfer, 26(2-3), 198-246.
  • [37] Ribatski, G., Wojtan, L., Thome, J. R. (2006). An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Experimental Thermal and Fluid Science, 31(1), 1-19.
  • [38] Qi, S. L., Zhang, P., Wang, R. Z., Xu, L. X. (2007). Flow boiling of liquid nitrogen in micro-tubes: Part I–The onset of nucleate boiling, two-phase flow instability and two-phase flow pressure drop. International journal of heat and mass transfer, 50(25), 4999-5016.
  • [39] Agostini, B., Revellin, R., Thome, J. R., Fabbri, M., Michel, B., Calmi, D., Kloter, U. (2008). High heat flux flow boiling in silicon multi-microchannels–Part III: Saturated critical heat flux of R236fa and two-phase pressure drops. International Journal of Heat and Mass Transfer, 51(21), 5426-5442.
  • [40] Mishima, K., Hibiki, T. (1996). Some characteristics of air-water two-phase flow in small diameter vertical tubes. International journal of multiphase flow, 22(4), 703-712.
  • [41] Yu, W., France, D. M., Wambsganss, M. W., Hull, J. R. (2002). Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. International Journal of Multiphase Flow, 28(6), 927-941.
  • [42] Zhang, W., Hibiki, T., Mishima, K. (2010). Correlations of two-phase frictional pressure drop and void fraction in mini-channel. International Journal of Heat and Mass Transfer, 53(1), 453-465.
  • [43] Boure, J. A., Bergles, A. E., Tong, L. S. (1973). Review of two-phase flow instability. Nuclear Engineering and Design, 25(2), 165-192.
  • [44] Ruspini, L. C., Marcel, C. P., Clausse, A. (2014). Two-phase flow instabilities: A review. International Journal of Heat and Mass Transfer, 71, 521-548.
  • [45] Wu, H. Y., Cheng, P. (2003). Visualization and measurements of periodic boiling in silicon microchannels. International Journal of Heat and Mass Transfer, 46(14), 2603-2614.
  • [46] Steinke, M. E., Kandlikar, S. G. (2004). Control and effect of dissolved air in water during flow boiling in microchannels. International Journal of Heat and Mass Transfer, 47(8), 1925-1935.
  • [47] Hetsroni, G., Mosyak, A., Pogrebnyak, E., Segal, Z. (2005). Explosive boiling of water in parallel micro-channels. International Journal of Multiphase Flow, 31(4), 371-392.
  • [48] Bergles, A. E., Kandlikar, S. G. (2003, January). On the nature of critical heat flux in microchannels. In ASME 2003 International Mechanical Engineering Congress and Exposition (pp. 701-707). American Society of Mechanical Engineers.
  • [49] Gedupudi, S., Karayiannis, T. G., Kenning, D. B. R. (2009). Modelling pressure fluctuations during flow boiling in microchannels with inlet compressibility and resistance.
  • [50] Gedupudi, S., Kenning, D. B., Karayiannis, T. G. (2009). 1-D modelling of pressure fluctuations due to confined bubble growth during flow boiling in a microchannel.
  • [51] Gedupudi, S., Zu, Y. Q., Karayiannis, T. G., Kenning, D. B. R., Yan, Y. Y. (2011). Confined bubble growth during flow boiling in a mini/micro-channel of rectangular cross-section Part I: Experiments and 1-D modelling. International Journal of Thermal Sciences, 50(3), 250-266.
  • [52] Kandlikar, S. G. (2006). Nucleation characteristics and stability considerations during flow boiling in microchannels. Experimental Thermal and Fluid Science, 30(5), 441-447.
  • [53] Balasubramanian, K., Jagirdar, M., Lee, P. S., Teo, C. J., Chou, S. K. (2013). Experimental investigation of flow boiling heat transfer and instabilities in straight microchannels. International journal of heat and mass transfer, 66, 655-671.
  • [54] Qu, W., Mudawar, I. (2002, January). Transport phenomena in two-phase micro-channel heat sinks. In ASME 2002 International Mechanical Engineering Congress and Exposition (pp. 135-147). American Society of Mechanical Engineers.
  • [55] Kandlikar, S. G., Kuan, W. K., Willistein, D. A., Borrelli, J. (2006). Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. Journal of Heat Transfer, 128(4), 389-396.
  • [56] Koşar, A., Kuo, C. J., Peles, Y. (2006). Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. Journal of Heat Transfer, 128(3), 251-260.
  • [57] Kuan, W. K., Kandlikar, S. G. (2007). Experimental study on the effect of stabilization on flow boiling heat transfer in microchannels. Heat Transfer Engineering, 28(8-9), 746-752.
  • [58] Kuo, C. J., Peles, Y. (2008). Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. Journal of Heat Transfer, 130(7), 072402.
  • [59] Wang, G., Cheng, P., Bergles, A. E. (2008). Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. International Journal of Heat and Mass Transfer, 51(9), 2267-2281. [60] Kuo, C. J., Peles, Y. (2009). Pressure effects on flow boiling instabilities in parallel microchannels. International Journal of Heat and Mass Transfer, 52(1), 271-280.
  • [61] Zhang, T., Tong, T., Chang, J. Y., Peles, Y., Prasher, R., Jensen, M. K., Phelan, P. (2009). Ledinegg instability in microchannels. International Journal of Heat and Mass Transfer, 52(25), 5661-5674.
  • [62] Tuo, H., Hrnjak, P. (2013). New approach to improve performance by venting periodic reverse vapor flow in microchannel evaporator. international journal of refrigeration, 36(8), 2187-219.
There are 61 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Mehmet Rafet Özdemir

Publication Date September 29, 2018
Submission Date May 28, 2017
Published in Issue Year 2018 Volume: 4 Issue: 6

Cite

APA Özdemir, M. R. (2018). A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS. Journal of Thermal Engineering, 4(6), 2451-2463. https://doi.org/10.18186/thermal.465684
AMA Özdemir MR. A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS. Journal of Thermal Engineering. September 2018;4(6):2451-2463. doi:10.18186/thermal.465684
Chicago Özdemir, Mehmet Rafet. “A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS”. Journal of Thermal Engineering 4, no. 6 (September 2018): 2451-63. https://doi.org/10.18186/thermal.465684.
EndNote Özdemir MR (September 1, 2018) A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS. Journal of Thermal Engineering 4 6 2451–2463.
IEEE M. R. Özdemir, “A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS”, Journal of Thermal Engineering, vol. 4, no. 6, pp. 2451–2463, 2018, doi: 10.18186/thermal.465684.
ISNAD Özdemir, Mehmet Rafet. “A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS”. Journal of Thermal Engineering 4/6 (September 2018), 2451-2463. https://doi.org/10.18186/thermal.465684.
JAMA Özdemir MR. A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS. Journal of Thermal Engineering. 2018;4:2451–2463.
MLA Özdemir, Mehmet Rafet. “A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS”. Journal of Thermal Engineering, vol. 4, no. 6, 2018, pp. 2451-63, doi:10.18186/thermal.465684.
Vancouver Özdemir MR. A REVIEW OF SINGLE-PHASE AND TWO-PHASE PRESSURE DROP CHARACTERISTICS AND FLOW BOILING INSTABILITIES IN MICROCHANNELS. Journal of Thermal Engineering. 2018;4(6):2451-63.

Cited By












Boiling Heat Transfer in a Micro- Channel Complex Geometry
IOP Conference Series: Materials Science and Engineering
R. Shakir
https://doi.org/10.1088/1757-899X/928/2/022129

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering