
 
   

Working Papers 
 

 

 
A New Strategy for Linking Historical Censuses:  

A Case Study for the IPUMS Multigenerational Longitudinal Panel 
 
 

Jonas Helgertz† 
University of Minnesota, Lund University 

 

Joseph R. Price 
Brigham Young University 

 

Jacob Wellington 
University of Minnesota 

 

Kelly Thompson 
University of Minnesota 

 

Steven Ruggles 
University of Minnesota 

 

Catherine R. Fitch 
University of Minnesota 

 
September 2020 

 
Working Paper No. 2020-03 

DOI: https://doi.org/10.18128/IPUMS2020-03 
 
†Address correspondence to Jonas Helgertz: helgertz@umn.edu. This research was funded by the National 
Institute on Aging grant R01AG057679. Financial support from the Minnesota Population Center is also 
acknowledged, through core funding (P2C HD041023) from the Eunice Kennedy Shriver National Institute for 
Child Health and Human Development (NICHD). Comments and suggestions from Matt Sobek, Dave Hacker, 
Evan Roberts, John Robert Warren, Matt Nelson, Leah Boustan, Ran Abramitzky and James Feigenbaum are 
gratefully acknowledged. 



 
 

Abstract 

This paper presents a new probabilistic method of record linkage, developed using the U.S. full count 

censuses of 1900 and 1910 but applicable to a range of different sources of historical records. The method 

was designed to exploit a more comprehensive set of individual and contextual characteristics present in 

historical census data, aiming to obtain a machine learning algorithm that better distinguishes between 

multiple potential matches. Our results demonstrate that the method achieves a match rate that is twice as 

high other currently popular methods in the literature while at the same time also achieving greater 

accuracy. In addition, the method only performs negligibly worse than other algorithms in resembling the 

target population. 
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Introduction 

There is a broad set of social research questions that benefit from linking individuals across datasets over 

time. This includes research related to demographic behavior, intergenerational mobility and how 

conditions during childhood affects later life outcomes. In the United States, considerable efforts have been 

made to digitize vast amounts of individual level data, with the publicly available full-count decennial 

censuses from 1850to 1940 being the most notable example. This data opens the possibility for life-course 

studies across multiple birth cohorts, but the lack of a stable personal identifier (such as a Social Security 

number) in historical sources makes it challenging to link individuals across records.  

During the past 25 years, multiple efforts have been undertaken to combine historical individual records to 

create longitudinal data, allowing for an improved understanding of the past. Along with digitization of 

historical records and improved computational capabilities, the past decades have seen an acceleration of 

the development of computerized, automated linking methods. In this paper, we present a new probabilistic 

method of record linkage, developed for linking individuals across historical records using the U.S. full 

count censuses of 1900 and 1910. The method proposed has implications for how data should be processed 

and exploited in order to maximize precision and linkage rates. More specifically, our method exploits the 

contextual nature of census data (individuals within households, households within neighborhoods), both 

when generating input data for the machine learning algorithm (training data), as well as when designing 

characteristics subsequently used by the linking algorithm in order to better distinguish between multiple 

potential matches. In doing so, not only are we able to achieve a match rate that is twice as high as the 

methods currently used in the literature, but we also achieve a higher degree of precision and obtain a linked 

sample which does equally well in resembling the target population. While the method outlined in the paper 

has been developed for linking individuals across decennial U.S. censuses, its underlying principles can 

also help improve the linking of other datasets in which individuals are listed along with their family 

members or neighbors.  

The linking process described in this paper incorporates additional household and neighborhood contextual 

features, yielding computer-generated matches closer to those a human genealogist would produce and – 

equally importantly - without decreasing performance for individuals lacking this data. This is achieved 

through the implementation of a two-phase linking approach which first links individuals, then links the 

remaining individuals among linked households. This can provide greater recall within a population while 

maximizing precision/accuracy. 
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Background 

Efforts to create longitudinal individual data for historical populations, frequently exploiting numerous 

different types of source material, are by no means novel. Examples include longitudinal datasets from 

Sweden (Scanian Economic Demographic Database, POPLINK), Canada (BALSAC), the Netherlands 

(Historical Sample of the Netherlands) and China (China Multi-Generational Panel Datasets), allowing for 

the study of demographic and socioeconomic outcomes from a life-course perspective over time periods, 

and in some cases going as far back in time as the 17th century. The databases typically cover limited 

geographical areas, only allowing for the examination of individuals while they reside in the area in 

question. Despite their limitations, the databases represent extremely valuable resources, being the result 

of large teams of research assistants manually linking individuals across sources, also facilitated by the 

rather localized area covered by the database.  

Record linkage of historical U.S. censuses began as early as Malin (1935) who linked farm operators in 

Kansas across thirteen censuses taken between 1860 and 1935. All early census record linkage was limited 

to smaller geographical areas such as Trempeleau county, Wisconsin (Curti 1959), Newburyport, 

Massachusetts (Thernstrom 1964), Atlanta, Georgia (Hopkins 1968), Boston, Massachusetts (Knights 

1971) and Kingston, New York (Blumin 1976). The overarching linking methodology in these studies was 

to track a population of men over time by manually searching microfilmed census listings. Since their 

source material only covered the location where the sample population was first observed, the study 

population became restricted to individuals who did not migrate, with nontrivial consequences regarding 

representability of the resulting sample (Ruggles et al. 2018). 

While constant human supervision over the linking process is an advantage, there are also many 

disadvantages. The true characteristics of the individual in the record are often altered by reporting errors 

from the respondent, errors introduced by the enumerator, and transcription errors in converting the hand-

written text into machine-readable format. Given these sources of errors, the decision of whether individuals 

in two records are the same person often involves weighing a complicated set of factors. As a consequence, 

it is difficult for manual linkers to maintain consistent criteria for determining matches. It is difficult to 

fully document the decision process, making replication impossible. Beyond the concerns about validity 

and reliability, manual record linkage is time consuming and expensive, making it infeasible for large 

populations that extend beyond local areas.  

While earlier attempts to track individuals over time using U.S. data relied on source material with limited 

opportunities to sort, restrict, and search among records, the first release of IPUMS data in the early 1990s 

represented a watershed moment. The digitization of historical census records opened new opportunities to 
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examine and follow substantially larger populations over time, catalyzing the transition to computerized 

approaches for processing the data. With the availability of larger population sets, one major challenge 

associated with linking census data became obvious: how could one systematically and most effectively 

use the available information in the source material to find the records corresponding to the same individual 

in another source?  Theoretically, this is a straightforward task, as we expect individuals to carry certain 

immutable characteristics over their lifespan. For example, an individual named John Smith, male and born 

in state s in the year t will display these same characteristics in the next census. Defining the universe of 

potential matches would therefore represent a straightforward task, limiting the population to individuals 

sharing those characteristics. Several factors make this less straightforward, however, including the 

prevalence of proxy reporting and lack of detail and precision in the data. As a result, nontrivial differences 

in the spelling of names and in the reported year or state of birth are common. This presents the researcher 

with a dilemma, since while allowing for a widely defined universe of potential matches increases the 

probability that the true match will be among the potential matches, it also increases the risk of a Type I 

error1 as well as increasing computational requirements. For example, going from restricting potential 

matches to individuals reporting the same year of birth to instead allowing for birth year reporting error of 

+/- three years increases the number of potential matches (amount of data that needs to be processed) by 

900 percent, holding everything else constant.    

The first comprehensive attempt at linking U.S. census data was made by Ferrie (1996), whose approach 

originated from a set of rules based on which records across two different censuses were considered to be 

the same person. Ferrie exploited the IPUMS sample for 1850 and an alphabetic name index of the 1860 

census that had been constructed for genealogical use. Ferrie coded both the IPUMS data and the 1860 

index phonetically and searched the 1860 index for cases that phonetically matched each name in the 

IPUMS sample.  After discarding cases with more than 10 potential matches, Ferrie located each potential 

match on the microfilm of the census enumeration, and used birth year (within three years), state or country 

of birth, and the presence of family members to determine which match was correct. If there were two or 

more perfect matches, the individual with the closest age difference was selected.  

At a meeting on historical record linkage held at the University of Montreal in 2003, Ruggles (2006) argued 

that using information about family members, place of residence, or occupation to disambiguate potential 

links would introduce selection bias that would be likely to distort estimates of geographic or economic 

mobility and other life-course transitions. Ferrie had come to a similar conclusion, and he announced that 

                                                           
1 Type I error refers to incorrectly declared matches, also called false positives. 
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he had already embarked on a new fully-automated record linkage project using only characteristics that in 

theory should remain consistent over time: name (for males), age, sex, and birthplace.  

Ferrie’s fully-automated record linkage became feasible with the advent of the first full-count historical 

census microdata. In 2003, a collaboration of IPUMS and The Church of Jesus Christ of Latter-day Saints 

released census microdata covering the entire U.S. population enumerated in 1880, comprising over 50 

million records (Roberts et al. 2003). Ferrie (2005) linked the new 1880 full-count database to the IPUMS 

1% samples of the 1850, 1860, 1870, 1900, and 1910 censuses. To avoid selection bias, Ferrie considered 

a limited set of variables. He required an exact match on name (except for very small spelling variations), 

matching birthplace, and a birth year within three years. All multiple matches were dropped, and no 

information on family members, place of residence, or other variables was consulted.   

Subsequent efforts to link U.S. censuses have virtually all followed Ferrie’s lead and avoided the use of 

variables that could introduce selection biases. IPUMS linked the 1880-full count census to the other 

IPUMS samples using the same variables as Ferrie, but using a probabilistic machine-learning strategy 

instead of his deterministic approach.  The IPUMS Linked Representative Samples (IPUMS-LRS) used a 

support vector machine to obtain the predicted probability that two records are a true match, based on a set 

of characteristics believed to be time-invariant across the life course, as well as consistently being available 

in both sets of data that were being linked (Goeken et al 2011). The support vector machine used manually 

linked input data to calibrate the relative importance of each examined characteristic, using characteristics 

such as name commonality, first and last name similarity score, and age difference. This probabilistic 

method of record linkage thereby allows for a more flexible linking approach, but also one whose 

performance ultimately will depend on the accuracy of the input data used by the algorithm to recognize 

patterns in the data that is consistent with a pair of records referring to the same individual. Under the 

umbrella of IPUMS-LRS, multiple datasets were released, spanning the time period 1850-1930, with 

versions of the method also being applied to census data from other countries. 

In recent years, automated linkage of U.S. censuses has become increasingly common. Many studies 

adapted and scaled Ferrie (1996) for use with the full-count census records that made the linking replicable, 

fully automated, and transparent. The first paper to implement this type of census linking for the entire 

population was Abramitzky, Boustan, and Eriksson (2012), and a similar approach was used by 

Abramitzky, Boustan and Eriksson (2014), Collins and Wanamaker (2015), Beach et al. (2016), and 

Alexander and Ward (2018). In general, these studies combine the use of phonetic classification used in 

Ferrie (1996) with the rules introduced by Ferrie (2005). Recent work uses statistical algorithms such as 

expectation maximization to determine which links are correct (Abramitsky, Mill, and Pérez 2018; Pérez 
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2019). The code needed to implement these approaches is now widely available for researchers to use 

(censuslinkingproject.org) and has become a very important tool for linking historical records.  

Following the example of IPUMS-LRS, other investigators have turned to probabilistic machine-learning 

approaches. Feigenbaum (2016) adapted a regression model to training data using statistical software and 

methods that are in the wheelhouse of many social scientists in order to evaluate potential matches in his 

1915 Iowa sample, linked to the 1940 Census. His approach made record linking methods that employ 

machine learning more accessible and more understandable. Other efforts to link historical records using 

supervised machine learning methods include Bailey et al. (2019), Abramitzky et al. (2020); and Price et 

al. (2019). The precision of each of these approaches is based on the training data that can be used to teach 

the model and the machine learning algorithm to discern between true and false links. Bailey (2018) 

provides a description of a massive effort to create training data using humans to label true and false links 

between historical records that involve frequent standardized training and double- and triple-entry practices 

to ensure a high level of quality. Price et al. (2019) uses links created on a public genealogy platform to 

create training data in which high quality links are created by people doing family history for their relatives 

and using information that goes beyond the fields contained in the census records. 

In the wake of the emergence of several straightforwardly applicable methods of record linkage and the 

availability of a plethora of digitized individual-level historical data, the focus has shifted towards 

comparing how existing methods perform. There is considerable debate about the quality of links created 

through automated methods (Bailey et al. 2020; Abramitzky et al. 2020). Bailey et al. (2020) uses the large 

training set that they created to evaluate the quality of automated linking methods. They note that 15 to 37 

percent of the links created by automated methods are identified as false links by human reviewers. Their 

evaluation highlights the importance of comparing the predictions of automated methods with the decisions 

made by humans doing the same task to evaluate possible improvements to automated approaches to link 

records. Hand linking individuals across records is a much too slow and expensive process to provide the 

primary approach, but efforts to create training data or validation sets can be used in combination with 

automated methods to create linked samples with high match rates and high precision.  

Our approach 

All the early efforts to link historical records—from Malin to the first iteration of Ferrie—used all 

information available for linking, including the characteristics of household members. These projects 

generally linked only a small fraction of the population for two main reasons. First, most studies were local 

and lost track of out-migrants; second, the source data were not machine-readable, and it was impossible to 

broadly search on many characteristics to find the best possible match. Because only a small percentage of 
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the population was linked, there was high potential for selection bias, especially bias favoring non-migrants 

who resided with the same family members across multiple census years. To mitigate these biases, record 

linkage projects conducted since 2003 have used only time-invariant characteristics, mainly name, birth 

year, sex, and birthplace.  

In the past seven years, IPUMS has released full-count machine-readable data for every surviving U.S. 

census from 1850 to 1940. The availability of the full-count data opens the potential for a new approach to 

record linkage. A consistent feature of the U.S. historical censuses, conducted every ten years, is that 

information on a range of individual level demographic and socioeconomic characteristics was collected, 

and the information is organized into families and households. By using all the information available—

mutable and immutable—we can link a far higher percentage of the population than was previously 

possible, with far lower levels of false links.  

Selection bias remains a concern. People who remain in the same place or remain married to the same 

person, for example, have more information available to establish links than do those who migrate without 

kin. All linkage efforts, however, introduce selection biases, and our preliminary analysis suggests that the 

bias introduced by our approach is comparatively small. Our linked data complements work based on 

linking individuals using immutable characteristics. The benefits of higher linkage rates and improved 

precision should be weighed against the concern of potential selection bias, particularly for social and 

geographic mobility.  

We use a range of individual, household, and contextual characteristics in a machine-learning probabilistic 

record linkage algorithm. We use a two-step approach, where we begin by linking men, obtaining a sample 

of high confidence and high precision links. We then proceed to a second step, exploiting the household 

links that are generated in stage one. Here, we use household-links generated in step one to maximally 

restrict the universe of potential matches, using a modified machine learning algorithm to link household 

members–men and women–that were not linked in the first stage. Each stage requires a unique set of 

training data to calibrate its respective machine learning algorithm, and is outlined separately below. 

Step I: Linking Men 

Training Data 

For the generation of the initial set of hand-linked training data, we extracted a sample of 3,000 men from 

the 1900 census. The training data consists of 50 randomly selected men from each state of birth 

(50*50=2500), in addition to 50 randomly selected men from 10 different regions of origin outside the 

United States (50*10=500). While deviating from the standard procedure when generating training data by 
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not being a random draw from the underlying 1900 population of men, the sample nevertheless largely 

reflects the full 1900-population in terms of basic demographic characteristics, other than region of birth. 

The universe of potential matches extracted from the 1910 full-count census was generated by restricting 

the linkable population to individuals who were male and born in the same state within +/- three years of 

the 1900 individual. In addition, the universe was limited to those having at least one identical last name 

adjusted bigram2 and a (unstandardized) first and last name Jaro-Winkler score of at least 0.7, respectively. 

Out of the 3,000 individuals initially selected from the 1900 census, the enforcement of aforementioned 

blocking criteria3 results in a population of 2,700 potentially linkable individuals. 

We set out to generate training data of the highest quality possible, through systematically relying on the 

wealth of resources provided by Ancestry.com when evaluating each potential match. Out of the 2,700 

individuals extracted from the 1900 census, we were able to confidently link 1,354 individuals, or 50.1 

percent to a record among the universe of 1910 census potential matches. The linking rate is somewhat 

difficult to compare to figures reported in other historical research on the United States due to differences 

in linking methods, samples and sources, but we remain confident that our share represents a gold standard.  

Expanding the Universe of Linking Variables 

Our machine learning algorithm shares several fundamental procedural characteristics with those proposed 

by Feigenbaum (2016). In terms of linking variables, our linking algorithm benefits from a number of those 

used by Feigenbaum, while also considerably expanding the set of linking variables. Indeed, this reflects 

one key extension of our linking approach, proposing that data–in particular census data spanning 

comparatively shorter time periods–can be used more effectively and enhance the algorithm’s ability to 

more accurately distinguish between potential matches as outlined in greater detail below.  

An illustrative example of the underlying idea of our algorithm is provided in Figure 1, taking as a point of 

departure a frequently encountered situation when relying solely on individual level information. In the 

example, the individual to be linked, Thomas P Arthur, represents someone with a relatively common name, 

also translating to more than one perfect match on first and last name to individual records in the 1910 

census. In a situation like this, remaining time-invariant linking characteristics are unlikely to assist in 

                                                           
2 The adjustment of the bigrams is through the first letter of the name being its own token. For example, Helgertz is 
split into “H”, “He”, “el”, “lg”, “ge”, “er”, “rt”, “tz”. Consequently, net of the Jaro-Winkler score similarity, the last 
names Helgertz and Wellington would pass this criterion, through “el”. Within the linking software developed to 
implement the algorithm outlined in this article, the use of first and last name adjusted bigrams reduces the baseline 
number of computations required during the generation of the universe of potential matches by 87 percent on sample 
datasets, reducing the runtime by about 70 percent. 
3 In addition, an update of the 1910 full-count census resulted in a slight further reduction (n=29) in the number of 
1900 individuals, due to an adjusted year of birth variable. 
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further distinguishing between the potential matches. As a result, all of the first four potential matches 

emerge as equally plausible candidates, with the linking algorithm thereby failing to identify one unique 

match. If anything, a human doing this task might choose the bottom row since the birth year matches 

exactly and there is no conflicting information for the middle initial. 

- Figure 1 here 

One key idea of this paper is that additional and readily available information can and should be used in 

order to arrive at a better calibrated machine learning algorithm. Figure 2 elaborates on the contents of 

Figure 1 in order to illustrate the usefulness of broadening the set of information used by the algorithm. In 

the example below, information on the name of the father of the 1900 individual as well as of the 1910 

potential match is added, allowing for straightforwardly determining what by all accounts appears to be the 

correct match. In addition, it then becomes clear that the P and F for the middle initial are written in a very 

similar way and one of them is likely a transcription error. Indeed, while in many situations it remains very 

difficult to conclusively determine one potential match as the correct one, the idea underlying our algorithm 

is that being able to rely on additional information increases the degree of precision in doing so. 

–Figure 2 here 

Parents and spouse characteristics 

Much of the historical census population is embedded in households and families that often persist across 

multiple censuses. This is particularly true for children under the age of 7 and married adults who are often 

with at least some of the same family members ten years later.  

For every record, categorical variables indicate whether the individual’s mother, father, or spouse was 

present in both the household of the 1900 individual and the 1910 potential match. When this is the case, 

the variable additionally indicates whether there is substantial mismatching information on key 

characteristics, suggesting that the 1900 and 1910 records are referring to a different parent or spouse. More 

specifically, the variable indicates the presence of (substantial) mismatch on year or place of birth, as well 

as whether (for the spouse) there are unrealistic values on the marriage duration variable or (for the parents) 

whether the parent’s relationship to the target individual changes, i.e. from biological to step-parent or vice 

versa. For observations where both the 1900 individual and the 1910 census potential match has a non-

missing observation on the name of the family member in question, we additionally calculate the Jaro-

Winkler name similarity score.  

Another potentially relevant piece of information available for all individuals in the 1900 and 1910 U.S. 

censuses is provided by the birthplace of both the individual’s mother and father. This is operationalized as 
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two separate indicators showing whether this matches across the censuses for the individual’s mother and 

father, respectively.   

Other household members 

Albeit less straightforward to operationalize in a manageable way, similarly useful information in 

accurately identifying matching records may be provided by other household members, related or 

otherwise. Due to individuals frequently residing in large households, we opted to operationalize the 

information by distinguishing between related (i.e. siblings, grandparents) and unrelated (lodgers, etc.) 

household members. Within each category, we calculate the Jaro-Winkler score for each member from the 

1900-household and compare it to every age (+/-5 years) and sex-appropriate individual belonging to that 

same household member type in the potential match’s 1910 household. Thus, the Jaro-Winkler name 

similarity of a female relative to the 1900 index individual named “Anna” and born 1884 is calculated for 

all female relatives of the 1910 potential match that were born between 1879 and 1889. This ascertains that 

comparisons are performed between the relevant “category” of people and, furthermore, that an index 

individual’s uncle, born in the mid-1800s will not be compared to a potential link’s sister, born 1895, not 

only belonging to a different sex but also widely differing in age. Subsequent to performing all relevant 

comparisons, an indicator variable that is used by the algorithm is generated, signaling whether there is at 

least one relative of the 1900 individual whose JW name similarity score is greater than or equal to 0.9 

when compared to a qualifying 1910 potential match’s related household member. Consequently, this 

indicates a high likelihood that there is (at least) one common relative who resides in the same household 

as the 1900 individual and the potential match in 1910. An analogously generated indicator variable 

measures the presence of unrelated household members that are present in both records. 

Residential characteristics 

The censuses also contain information on the individual’s place of residence and on potentially relevant 

neighborhood characteristics. While not available for every household, many individuals in both censuses 

live in households where the street name is reported. Conditional on the 1900 index individual and the 1910 

potential match individual living in the same state and county, we calculate the degree of street name 

similarity4, again through the Jaro-Winkler string comparison score. The rationale underlying this as a 

linking variable pertains to its use in confirming rather than rejecting a potential match. More specifically, 

since migration was not uncommon, a low street name similarity score fails to provide any evidence against 

                                                           
4 Street names are cleaned, removing universal components, including “street”, “avenue”, “road” and “alley” 
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a potential match. On the other hand, however, a high score should provide strong evidence in favor of a 

match. 

A second indicator is represented by calculating the share of common neighbors between the 1900 index 

individual and the 1910 potential match individual. Again, its main expected use is in confirming rather 

than rejecting potential matches, which is why we carefully design the variable only to assist with the 

former. We begin by extracting the ten nearest preceding and ten following household heads’ last names 

for the 1900 sample individual, conditional on the neighboring household residing in the same county and 

state as the sample individual. We follow the same procedure for the potential matching individual from 

the 1910 census. Thus, for an individual with at least ten households listed before and after on the census 

form, respectively, and residing in the same county and state, the individual’s twenty closest residing 

neighbors are obtained. Conditional on the 1900 individual and the 1910 potential match residing in the 

same state and county in both censuses, through Jaro-Winkler scores, we proceed to compare each of the 

1900 individuals’ neighbors to every neighbor household’s last names of the potential match from 1910. 

Treating JW-scores above 0.95 as evidence of the presence of a neighbor, a 1900 sample individual will 

have between zero and twenty common neighbors. Since the vast majority of observations pertain to 

individuals with either zero or several common neighbors, we operationalize this information as a 

dichotomous variable, indicating whether one or more neighboring household is identical across the census 

records. 

Additional linking variables 

When linking a sample of the population from one record to the full population in another record, the risk 

of declaring false positives will increase. An illustrative example is provided by a situation where the 

sample that we are trying to link contains an individual John Stevenson, born in state s and in year y. Born 

in the same state and year is a second John Stevenson who was not included in the random sample of the 

population that we chose to link. If only the second John Stevenson survived through the linking period, 

resulting in the linking algorithm almost certainly declaring a positive match with the namesake that was 

included in the linking sample. It is easy to see how this problem is exacerbated with sample data, since if 

we were linking full populations, both John Stevensons would likely be linked to the only surviving one. 

Through appropriate post-processing of the linked data, dropping duplicate links, both would be discarded 

from the data. In an attempt to quantify the extent of this problem for each 1900 sample individual and 

allowing for the algorithm to account for this, we calculate the number of individuals sharing the 1900 

sample individual’s (standardized) first and last name in the 1900 census, conditional on being born in the 

same country/state and within +/- three years. The underlying logic is to provide the algorithm with a 
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quantification of the likelihood that a link could be declared to another individual with the exact same name, 

given the aforementioned blocking criteria. 

As mentioned earlier, migration at the time was common, a phenomenon that we operationalize for the 

machine learning algorithm through the distance between the county of the 1900 individual and that of the 

1910 census potential match.   

The algorithm is also provided with information on the 1900 individual’s race, as well as whether this 

corresponds to the race of the 1910 potential match. The variable is intended to both capture underlying 

differences according to race in the ability to accurately link across censuses, as well as promoting matches 

when the 1900 individual and the 1910 potential match are recorded as belonging to the same race. 

Attempting to further distinguish between individuals with different underlying linkage probabilities, the 

algorithm is provided with information on the 1900 individual’s region of birth, both domestic and foreign. 

Additionally, U.S. born individuals with (at least) one foreign born parent are indicated as being second 

generation immigrants. Lastly, and naturally only of relevance to the foreign born, we calculate the 

difference in the reported immigration year for the sample individual from the 1900 census and their 

potential match in 1910. 

Training and implementing the algorithm 

The approach selected for training the machine learning algorithm is similar to Feigenbaum (2016), 

however relying on a logistic rather than a probit regression model, as we found its performance consistently 

providing superior stability. Based on model parameters calibrated on training data, the machine assigns 

the predicted probability of a match for each 1900 and 1910 census potential match. The key decision 

therefore becomes which thresholds to select when declaring links in the data. This pertains to the predicted 

probability cutoff (α) value, roughly representing the required estimated similarity of two census records, 

as well as the relative probability cutoff (β) value, measuring in relative terms how much better than 

remaining potential matches the highest probability match is required to be. This is determined by 

employing a train-test-split procedure5 and cross-validation over a range of realistic values of both 

thresholds in order to identify the optimal cutoffs. Selecting the optimal cutoffs is not straightforward, 

however, as the performance parameters of interest in record linkage, precision (share of identified matches 

                                                           
5 This refers to a process where the training data is split into two, and where one half is used to calibrate model 
parameters and the other half is used to compare the resulting declared matches to the matches identified when 
generating the training data. By changing the α and β thresholds, different matches will be declared, however, 
always compared to the same underlying “gold standard” data.  
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that are correct) and recall (share of matches in the underlying training data that are identified) move in 

opposite directions as the thresholds are adjusted.  

We select α and β thresholds based on Matthew’s Correlation Coefficient (MCC), designed to be especially 

advantageous for use with unbalanced two-class data (Chicco 2017). The MCC, outlined in Eq. (1) below, 

compares the predictions of the algorithm to all possible outcomes (true/false positives/negatives) and 

provides a single metric (ranging from -1 to +1) to select which thresholds to use for overall optimal 

performance. For each unique combination of threshold values within a plausible range6, we repeat the 

train-test-split procedure ten times in order to calibrate a stable MCC value. In the MCC formula displayed 

in equation (1) below, TP represents true positive, TN represents true negative, FP represents false positive, 

and FN represents false negatives: 

(1) 𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑇𝑇 ×𝑇𝑇𝑇𝑇−𝐹𝐹𝐹𝐹 ×𝐹𝐹𝐹𝐹
�(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹)

 

The model used to calibrate thresholds is presented in Table A1 in the Appendix, along with variable means 

in the underlying training data. Note that this is the model output using the full set of training data, and not 

the output from any of the separate train-test-split runs. Based on the average MCC obtained for each 

combination of α and β, we were able to identify the threshold values yielding the overall best performance, 

amounting to an MCC of 0.897, associated with a precision of 0.90 and a recall of 0.87.  

Having obtained the thresholds, we proceed to implement the first stage of the linking procedure. For this 

exercise, we randomly selected 100,000 men from the 1900 full count census, linking them to potential 

matches following the same criteria as when generating the training data. Using the point estimates 

presented in Table A1 to predict the probability of each 1900-1910 potential match, subjected to the 

previously identified α and β thresholds, the algorithm yields 46,342 unique matches, translating to a 

linking rate of 46.3 percent. 

Step II: Linking remaining household members 

One of the major challenges associated with the feasibility of any attempt at record linkage is its 

considerable computational requirements. Therefore, applying blocking criteria to limit the universe of 

potential matches is typically implemented, possibly at the expense of the exclusion of de facto links 

through reporting and digitization errors in characteristics such as name and state or year of birth.  The 

second step of our linking procedure takes advantage of the high-confidence links that were made in the 

                                                           
6 The range of threshold values for α and β were 0.02-1 and 1-3, respectively. 
7 This is obtained using a value of α of 0.26 and a β of 1. 
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first step, while at the same time relaxing restrictive blocking criteria. The links already obtained provide 

valuable and specific information regarding where to look for individuals in the immediate circle of the 

person who was successfully linked in step I. More specifically, consider a situation like that in Figure 3 

below, where Michael Corcoran and his son, John M Corcoran (both highlighted in grey) are among the 

individuals who we attempt to link in Step I. In this hypothetical yet hardly unusual example, we were 

unsuccessful in linking the son, likely because his first name in 1910 is listed as Mike rather than John M. 

Also likely are situations where the year of birth reported in the 1910 census fails to be within the +/-3-year 

interval or where there is a change in the individual’s state of birth.  

- Figure 3 here 

The logic of the second step is to use the 1910 household identifier as the primary blocking criterion when 

creating the universe of potential matches for all remaining (unlinked) family members. Since this restricts 

the population of potential matches (and thus also the computational requirements) to such a great extent, 

we are able to relax all other blocking criteria, including place of birth, year of birth, sex, and name 

similarity score. In fact, the only remaining blocking criterion is year of birth (+/- 10 years). In the creation 

of training data consisting of 4,000 individuals, slightly differing characteristics were generated for use by 

the linking algorithm. The considerably lower degree of complexity of these characteristics reflects the 

much more straightforward task of linking once being able to block on the household level. This new level 

of simplicity is also reflected in the 1900 individual only being linked to 2.7 potential matches on average, 

as compared to 82 potential matches in Step I. The population of linkable individuals is reduced to 3,776 

as a result of the blocking criteria used, and we were able to manually link 61.4 percent (2,320 individuals).  

Linking variables 

Similar to the earlier outlined procedure, the algorithm in step II is trained using characteristics such as 

Jaro-Winkler first and last name similarity scores, whether the race and place of birth of the 1910 potential 

match lines up with the 1900 census individual, and similarity in year of birth. Overall, however, a much 

more succinct set of linking variables are used, also reflecting the greater ease for the algorithm to 

confidently declare matches when the universe of potential matches is limited to the household.  

While the incorrect enumeration or digitization of the individual’s sex remains an unusual phenomenon in 

the data, it nevertheless does occur. In fact, in the 1900 census, there are over 100,000 people who have a 

gender that doesn’t match their relationship to the household head, such as a daughter who is listed as male. 

As a consequence, a variable indicating whether the reported sex of the 1900 individual and the 1910 

potential match is the same was created, naturally with the expectation that a mismatch on this characteristic 

will lower the predicted probability for any potential match. As indicated earlier, a more common 
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occurrence is that the recorded name(s) of an individual change over time, for example from John M in 

1900 to Mike in 1910. In order to capture this possibility, categorical variables measure whether the first 

and middle name initials in 1900, respectively, matches the first or middle name initial of the 1910 potential 

match. As a consequence, for the John M to Mike potential match, the variable intends to signal the presence 

of evidence in favor of a link, whereas this would not be the case for the John M to Phil combination of 

records.  

The two last linking characteristics we operationalize capture the individual’s role within the household as 

well as the presence of potentially competing matches. Firstly, we believe that the individual’s position 

within the household is characterized by varying degrees of volatility. More specifically, whereas a 

household head or spouse is likely to find themselves in a similar household a decade later, this is 

substantially less likely to be the case for a lodger or for a teenage child. Net of this, we believe that a 1900 

individual and a 1910 potential match who occupy the same position within the household is a signal 

promoting a match. Lastly, we model the likelihood of incorrectly declaring a link by capturing the highest 

Jaro-Winkler score of a competing match in the household. The logic is perhaps most easily understood 

through an example like that displayed in Figure 4 below. In this situation, assume that we successfully 

linked the father, Stephen Frye, across the censuses and now turn to linking the remaining family members. 

In this case, the older of the two sons, Jonah, died in the intercensal period. Due to the high name similarity 

score between Jonah and Jonathan (JW=0.925), it is not, however, unlikely that many algorithms would 

have linked both Jonah and Jonathan in 1900 to the same 1910 record. As a consequence, both links would 

have been removed in the post-processing phase, as they represent duplicate matches. In an attempt to avoid 

this loss of data, for each 1900 individual, we obtain the highest name similarity score between the 1910 

potential match in question and the remaining 1900 household members of that individual. In this case, for 

the Jonah 1900 record, while the name similarity score of Jonah and Jonathan (the 1910 potential match) 

amounts to 0.925, the corresponding value on the variable capturing the name similarity score of the most 

likely competing match amounts to 1. Consequently, the higher the latter score, the more likely it is that the 

potential match actually is another individual in the same household. 

- Figure 4 here 

Training and implementing the algorithm 

The procedure used to calibrate the linking algorithm for Step II is the same as for Step I. Again, we opt for 

a logistic regression model when we calibrate the algorithm as well as which thresholds to use to optimize 

performance, performing ten loops over relevant threshold values to obtain stability. The estimated model 
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parameters, along with variable means, are presented in Table A2, Appendix, corresponding to a precision 

of 96.2% and a recall of 97.0% at a maximum MCC value of 0.968. 

Implementing the second step is considerably less computationally demanding due to the ability to block 

on household identifier. The approximately 46,000 links from Step I yield 237,000 unlinked 1900 

household members–both men and women–to be linked to the 1910 census in Step II. Despite the 

substantial number of individuals that we aim to link, the fact that the 1910 universe of potential matches 

is limited to household(s) to which their relatives belonging to the already confirmed matches have been 

linked limits the number of potential matches. Consequently, if a given linked individual is from a 1900 

household where two members have been linked to different 1910 households in Step I, both these 

households will represent the universe of potential matches. Applying the parameter estimates and 

calibrated thresholds to the universe of potential matches, this results in another 104,932 matches, for a 

total of 151,274 linked men and women.  

Performance comparison 

The linking procedure introduced in this paper introduces two main innovations to automated record 

linkage: namely the algorithm’s systematic use of a more extensive set of characteristics as well as 

implementing a two-step procedure where we are able to leverage the existence of confident links to 

substantially relax typically-used blocking criteria and thereby allow previously undiscoverable links to be 

found. It is, however, unclear how this approach performs compared to other methods of record linkage 

that are commonly encountered in the social scientific literature. We therefore proceed to implement both 

the Feigenbaum (2016) probabilistic record linkage method as well as the Abramitzky-Boustan-Erikson 

(2019) method (ABE), in order to see how they compare. We will limit the comparison to the links obtained 

in Step I, by applying aforementioned methods in linking the same 100,000 men, comparing the linked 

populations in terms of i) linkage rates, ii) precision, and iii) representivity.  

When implementing the method proposed by Feigenbaum (2016), we use the same training data from Step 

I of the approach described in this paper9. In order to replicate the method in question as closely as possible 

to the original, however, we calibrate the performance thresholds using a probit estimator and with the same 

linking variables as Feigenbaum uses. Again, we select the α and β thresholds yielding the optimized 

performance based on MCC10. The ABE algorithm was implemented using the script provided by the 

                                                           
8 Values used for α and β are 0.41 and 1.1, respectively. 
9 Parameter estimates are presented in Table A3, Appendix. 
10 The α and β values used were 0.08 and 1.7, resulting in an optimum MCC of 0.72. We suspect the training data 
used by Feigenbaum (2016) is characterized by a higher linkage rate than ours, despite the data that is linked being 
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authors11, using first name, last name, and birthplace as the exact match variables. Year of birth information 

is also used, first looking for exact matches, subsequently expanding the search to individuals with up to a 

two-year difference. NYSIIS standard names were also used to compare among potential matches. 

Linkage rate 

Table 1 illustrates the number of individuals out of the sample population of 100,000 men that were 

confidently linked across the methods evaluated in this paper. Beginning with Step I of our method, 46,342 

men, or 46.3 percent, are linked across the censuses. The Feigenbaum and ABE linking methods yield a 

substantially lower number of confirmed links, with the ABE method yielding 26,500 links and the 

Feigenbaum method yielding 28,400 links.  

While the methods confidently link differing shares of the sample population, another relevant 

consideration pertains to the degree to which the methods–when declaring a match–come to the same 

conclusion. The agreement rate is thus calculated conditionally on both compared methods declaring a link 

for a given 1900 census individual. Across methods, the agreement rate is high, from 87 percent when 

comparing our method to Feigenbaum to 93 percent when comparing ABE with Feigenbaum.  

- Table 1 here 

Link accuracy 

Despite the algorithms, to a large extent, being in agreement when declaring a match, a investigating how 

they perform when disagreeing will further our understanding of the advantages and disadvantages 

associated with selecting one approach over another. A frequently relied upon measurement, precision, is 

not independent of the process, as it is directly derived from the training data used to calibrate the linking 

algorithm. Instead, we make use of an extensive set of links from the Family Tree at familysearch.org. This 

comparison data is described in more detail in Price et al. (2019) and consists of pairs of records that have 

been attached to individual profiles on a genealogical website. This provides us with an excellent and 

unbiased way to investigate the accuracy of our declared links, as the assessment is independent of all 

methods that are being compared. It, however, needs to be underlined that while the database contains a 

very large number of high-confidence links that we can double check our declared links against, it does not 

cover the entire population. For example, out of the 1900 individuals who were successfully linked using 

Step I of our linking procedure, about 5% are covered by the database used to crosscheck performance. As 

                                                           
recorded 25 years apart. We believe our generally less impressive precision and recall values when calibrating our 
algorithm is linked to this difference in the training data. 
11 https://ranabr.people.stanford.edu/sites/g/files/sbiybj5391/f/abe_basic_approach_1.pdf 
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a result, precision estimates are based on the subset of individuals in the 1900 census who are successfully 

linked by each method that overlap with the Family Search database12.  

- Table 2 here 

Table 2 illustrates that all methods similarly produce links that are of high quality in terms of agreement 

with the Family Search database. Among sample individuals from the 1900 census that are present and 

linked to a 1910 census record in the Family Search database, the accuracy across the three models ranges 

from a low of 87% (13% of declared matches do not agree with the Family Search database) for the 

Feigenbaum method to a high of 98% for the method described in this paper. Thus, despite linking a 

substantially higher proportion of the original sample of 100,000 randomly selected males from the 1900 

full count census, the procedure outlined in this paper is able achieve a higher overall accuracy than both 

of the other algorithms.  

Delving a bit deeper into the overall accuracy statistic unsurprisingly reveals a further increase when two 

algorithms are in agreement regarding the declared link. More specifically, when our algorithm declares 

the same link as either the Feigenbaum or ABE method, the Family Search database suggests an accuracy 

of 99 percent. Arguably of greater interest is the extent to which declared matches are correct across the 

methods when they arrive at different conclusions. Beginning with matches only declared by our algorithm, 

also representing the single most common category, the agreement with the Family Search database is only 

about one percentage point lower. In contrast, the decline in the agreement rate when examining matches 

only made by the Feigenbaum or the ABE algorithm is quite significant. Only in about 20 and 60 percent 

of the cases, respectively, does the match correspond with that in the Family Search database. Lastly, and 

further evidence to support our method’s improved ability to accurately distinguish between potential 

matches, in the cases where both our and the Feigenbaum or ABE algorithm declares a match for a 1900 

individual but disagrees on which 1910 individual represents the true match, at least 90 percent of such 

cases result in our link corresponding to the Family Search database. 

Representivity  

The evidence we have presented suggests that the method introduced in this paper performs better than the 

other evaluated methods, with respect to both accuracy and linkage rate. A nontrivial consideration is, 

however, to what extent a linked sample resulting from any method of automated record linkage is able to 

                                                           
12 Manual precision checks of all categories of cases presented in Table 3 but not covered by the Family Search 
database are provided in the Appendix, Table A4. While the manual check consistently suggests lower accuracy 
than the numbers provided by the Family Search database, a large internal consistency between the performance of 
respective linking algorithm remains.  
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reflect the underlying 1910 populations, as strong selection mechanisms in the process of record linking 

may result in linked samples that are not representative of the population of interest. As far as the method 

outlined in this paper is concerned, this is may be a particularly relevant concern, since the household level 

features used to conduct linking may disproportionately link individuals experiencing household level and 

geographical stability over time. In order to investigate to what extent this appears to be the case, Table 3 

presents each linked sample’s composition according to a range of characteristics, comparing them to a 

random subsample extracted from the 1910 full-count census, evaluating differences in means through t-

tests. The comparison population is restricted to men, as well as to individuals 7 year of age and older and–

if foreign born–with a time of arrival no later than 1900, serving to restrict the comparison population to 

individuals who were credibly present in the 1900 sample population, given the blocking criteria imposed. 

- Table 3 here 

The linked populations resulting from all tested methods diverge from the comparison population across 

virtually all examined characteristics. Across all three linking methods, the resulting 1910 populations are 

older, more likely to be white, U.S. born and residing in a rural area, in addition to being characterized by 

a higher socioeconomic status than the comparison sample population. This is generally consistent with 

Bailey et al. (2019), who, in their evaluation of several of the most commonly used automated record 

linkage methods, note that “no method consistently produces representative samples”. Of potentially greater 

importance are differences across methods in their (in)ability to generate linked populations reflecting 

certain 1910 population characteristics. As far as our method is concerned, Table 3 reveals that the Step 1 

linked population contains an overrepresentation of individuals residing with parents as well as a share of 

lifetime migrants that is lower than in the 1910 population that it should reflect. Should one wish to analyze 

a population that more closely resembles the comparison 1910 population, the data thus suggest both the 

Feigenbaum and the ABE method offer a better ability to do so. There are, however, important implications 

linked to differences across methods’ accuracy, since we know that links generated by the 

Feigenbaum/ABE methods are associated with considerably more noise, through incorrect links. The issue 

is further illustrated by Table 4, showing differences in means across the linking methods, depending on 

whether observations were labeled as accurate links by the Family Search database. Beginning with our 

method, there are few statistically significant differences in means between the two categories, suggesting 

that–for example–the proportion of incorrect links among the foreign born does not differ from the 

proportion among the native born.  

- Table 4 here 
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Turning to the alternative methods, important differences between the characteristics of correctly and 

incorrectly linked individuals emerge. Specifically, for both the Feigenbaum and the ABE methods, 

incorrect links are disproportionately found among individuals who are black, of low socioeconomic status, 

living in an urban area and are lifetime migrants. Consequently, while these methods yield populations that 

in some respects more closely resemble the comparison 1910 population, our evidence suggests that this 

comes at the price of higher errors in the linkage of individuals possessing these very characteristics.  

 

Step II Links 

Thus far, only the first step of our linking procedure has been evaluated, as only it can directly be compared 

to the Feigenbaum and ABE linking procedures. We now proceed to evaluate the complete set of links 

generated by the approach introduced in this paper. As previously reported, Step II links include remaining 

household members of individuals that are successfully linked in Step I, benefiting from being able to very 

narrowly define the universe of potential matches. Additionally, while we restricted the population linked 

in Step I to men, in Step II we are able to link a large population of women, primarily children and spouses. 

Table 5 illustrates that the additional approximately 105,000 individuals that are linked in Step II are 

characterized by a similarly high agreement rate compared to the Family Search database as in Step I, 

amounting to 98 percent.  

- Table 5 here 

While Step I was developed to offer an alternative to already existing methods for linking historical records, 

the addition of Step II was primarily developed to be a tool useful for efforts to link complete-count 

populations or for research questions focusing on the household as a unit of analysis. The ability to isolate 

the universe of potential matches to such a great extent allows for the confident identification of links even 

when there is nontrivial discrepancy of traditionally-used blocking criteria, such as place or year of birth. 

Resulting from the exercise of this paper, Step II yields an additional population of 59,000 women and 

46,000 men. Table 6 compares the male (Step I+II) and female (Step II) populations to a randomly selected 

population of 500,000 individuals from the 1910 census. Focusing initially on men, the added population 

from Step II makes the linked population slightly younger and from larger households than the 1910 

comparison population. In addition, the proportion of the population that resides with parents increases 

further. For women, selection according to the investigated characteristics generally resembles those for 

men, with the linked population disproportionately being white, not being a lifetime migrant and residing 

with a family member and in a larger household than the average woman from the 1910 census. 
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- Table 6 here 

Conclusions 

A large empirical literature has emerged from numerous efforts to link individuals across historical records 

using various forms of deterministic and probabilistic machine learning techniques. This paper is borne out 

of an expectation that the use of an expanded set of characteristics throughout the linking process yields 

higher precision and linkage rates, despite potential shortcomings in terms of stronger selection 

mechanisms. More specifically, we propose the systematic use of information on household members and 

available contextual characteristics, both to maximize precision and to increase the ability to declare 

matches. We conclude that not only does our method yield a considerably higher number of links, but also 

with a higher degree of accuracy than the methods with which we compare. At the same time, it needs to 

be underlined that our method does yield a population that underrepresents lifetime migrants—a significant 

concern. It is also true, however, that there appear to be disproportionately more false links made by the 

ABE and Feigenbaum methods among the groups that are known to be more difficult to link, including 

lifetime migrants and non-whites. The consequences of sample selection, as well as differing rates of linking 

errors by subgroups associated with substantive research questions, are important and need to be explored 

in greater detail in future research.  

The approach used in this paper is part of the process of eventually creating a longitudinal panel dataset 

that includes everyone that lived in the United States between 1850 and 1940: the Multigenerational 

Longitudinal Project. Consequently, the method is designed to be straightforwardly modifiable to link 

censuses besides 1900-1910, either by using the same training data or after generating data uniquely suited 

for the censuses in question. Our method achieves very high match rates and precision, but it is likely that 

future access to additional records (such as birth, marriage, death, and administrative records) will make it 

possible to achieve even higher match rates. Efforts like the Longitudinal, Intergenerational Family 

Electronic Micro-Database (Bailey 2018) and the Census Longitudinal Infrastructure Project (Massey et al. 

2018) point in the direction of using multiple record types to link censuses. In addition, it is likely that 

combining machine learning with traditional genealogical approaches could identify linkages that are 

simply impossible to find using only one tool or the other (Price et al. 2020). Limiting linking approaches 

to immutable characteristics is likely to come at the cost of blocking or capping the match rates that are 

possible and increasing the number of false positives that are used to answer research questions. 

Linkage strategies based on immutable characteristics that have dominated the literature for the past two 

decades highlighted the potential for selection bias in record linkage, and such linked datasets may still be 

preferred for some research questions. The approach in this paper is an effort to provide a complementary 
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approach that has its own set of advantages. Modern access to the full-count census records and fast 

computing makes it possible for researchers to test the conclusions of their analysis using both types of 

linked samples. In addition, the trade-off between the two approaches will only be present in the short-run, 

while the linkages of people across census records remains incomplete. It is likely that combining multiple 

methods will allow the state of the art to move more quickly to the eventual goal of linking the great majority 

of the population across all of the US census records, at which point concerns about selection bias will be 

greatly reduced.  

The exercise presented in this paper is limited to only linking a small subsample of the underlying 

population from the 1900 full-count census to records from the 1910 census. The linking algorithm, 

available for download at ipums.org., was developed using the statistical software Stata (MP, version 14) 

and shares other methods’ challenges when it comes to scaling up the populations that one wishes to link. 

Unsurprisingly, the multitude of linking features employed by our method implies that the running time as 

well as the storage space and memory required exceeds that of the Feigenbaum method due to the latter’s 

relative simplicity. In order to overcome these performance issues, hlink has been developed by the 

Multigenerational Longitudinal Panel project. hlink uses a distributed processing engine to spread the 

workload across a cluster of computers, increasing the efficiency and the speed with which linking can be 

performed. As an example, linking the full 1900 population to the 1910 full-count census, yielding 30 

million confirmed links, required a running time of 65 hours. The program, built on top of Apache Spark, 

will be released in the near future and is designed for the user to tailor the procedure outlined in this paper 

for other datasets, choosing which linking variables to include or exclude, as well as employing various 

linking methodologies, thereby further pushing the frontier of record linkage of individual level data. 
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Table 1: Linkage rate, by method 

 

Step I Feigenbaum ABE
Confirmed links 46,342 28,404 26,459
Linkage rate 46.3 28.4 26.5
Agreement rate among declared matches:
Step I - 86.7 90.7
Feigenbaum - 92.6
ABE -
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Table 2: Accuracy, by method 

Step I Feigenbaum ABE
Confirmed links 46,342 28,404 26,459
Agreement rate with Family Tree database 97.7 86.5 93.4
Identical links declared by both algorithms 19,038 18,597

98.5 99.0
Only linked in Step I 24,372 25,848

97.0 96.5
Only linked by Feigenbaum/ABE 6,434 5,965

18.9 62.2
Linked by both algorithms, different links 2,932 1,897
Step I 95.0 90.7
Feigenbaum/ABE 0.4 5.4
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Table 3: Representivity, by method
Census

Age 31.57 33.06 *** 35.29 *** 32.71 ***
7-20 0.33 0.33 0.28 *** 0.32 ***
21-45 0.44 0.41 *** 0.43 ** 0.44
46-60 0.15 0.17 *** 0.17 *** 0.15
61+ 0.07 0.09 *** 0.12 *** 0.09 ***

Race
White 0.88 0.93 *** 0.93 *** 0.92 ***
Black 0.11 0.07 *** 0.07 *** 0.08 ***
Other 0.01 0.00 *** 0.00 *** 0.00 ***

U.S. born 0.87 0.89 *** 0.90 *** 0.90 ***

Household size 6.02 5.85 *** 5.74 *** 5.85 ***
1 0.03 0.01 *** 0.03 *** 0.02 ***
2-3 0.21 0.20 ** 0.23 *** 0.22 ***
4-6 0.42 0.44 *** 0.43 *** 0.43 ***
7-10 0.27 0.29 *** 0.26 *** 0.27 **
11+ 0.07 0.05 *** 0.06 *** 0.06 ***

Resides with spouse 0.43 0.47 *** 0.50 *** 0.46 ***
Resides with parent(s) 0.39 0.45 *** 0.37 *** 0.41 ***

Married 0.46 0.48 *** 0.51 *** 0.48 ***

Socioeconomic index* 23.46 24.07 *** 24.58 *** 23.89 **
1-9 0.14 0.12 *** 0.12 *** 0.13 ***
10-14 0.19 0.21 *** 0.22 *** 0.20 ***
15-25 0.14 0.15 *** 0.14 0.15 **
26+ 0.17 0.18 *** 0.19 *** 0.18 ***
Missing 0.36 0.34 *** 0.33 *** 0.34 ***

Resides in rural area 0.57 0.59 *** 0.59 *** 0.58 ***
Lifetime migrant (only for U.S. born) 0.26 0.21 *** 0.27 * 0.25 ***

Region of residence
New England 0.07 0.08 *** 0.09 *** 0.08 ***
Mid-Atlantic 0.19 0.19 0.15 *** 0.18 ***
East North Central 0.20 0.23 *** 0.21 *** 0.22 ***
West North Central 0.13 0.15 *** 0.15 *** 0.15 ***
South Atlantic 0.13 0.12 *** 0.14 0.12 ***
East South Central 0.09 0.09 * 0.09 *** 0.08 ***
West South Central 0.10 0.08 *** 0.09 *** 0.09 ***
Mountain 0.03 0.02 *** 0.03 * 0.03
Pacific 0.05 0.04 *** 0.05 * 0.05 *
Observations 100,000
Notes: * Mean SEI score only calcucated for individuals with non-missing values
*** p<0.01, ** p<0.05, * p<0.1

46,342 28,404 26,459

Step I Feigenbaum ABE
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Table 4: Accuracy across methods, by 1910 characteristic 

Agree Disagree Agree Disagree Agree Disagree
Age 35.40 33.52 35.19 37.95 *** 34.14 37.00 **

Race
White 1.00 0.99 0.99 0.94 *** 1.00 0.91 ***
Black 0.00 0.01 0.01 0.06 *** 0.00 0.09 ***
Other 0.00 0.00 0.00 0.00 0.00 0.00

U.S. born 0.94 0.95 0.95 0.94 0.95 0.91 **

Household size 6.19 5.93 6.14 5.87 6.16 6.47

Resides with spouse 0.59 0.60 0.57 0.58 0.55 0.52
Resides with parent(s) 0.42 0.37 0.42 0.27 *** 0.45 0.28 ***

Married 0.60 0.63 0.58 0.60 0.56 0.56

Socioeconomic index
1-9 0.09 0.12 0.09 0.14 *** 0.09 0.18 ***
10-14 0.30 0.30 0.29 0.27 0.27 0.25
15-25 0.14 0.12 0.14 0.13 0.15 0.12
26+ 0.16 0.12 0.15 0.18 0.15 0.15
Missing 0.31 0.35 0.33 0.28 ** 0.33 0.29

Resides in rural area 0.70 0.70 0.70 0.63 *** 0.69 0.61 **
Lifetime migrant (only for U.S. born) 0.27 0.27 0.27 0.37 *** 0.26 0.40 ***

Region of residence
New England 0.08 0.04 0.09 0.07 0.09 0.04 ***
Mid-Atlantic 0.14 0.12 0.11 0.14 * 0.12 0.15
East North Central 0.28 0.21 * 0.28 0.17 *** 0.28 0.23 *
West North Central 0.18 0.17 0.19 0.16 0.19 0.16
South Atlantic 0.10 0.15 0.10 0.17 *** 0.09 0.14 **
East South Central 0.08 0.08 0.07 0.10 ** 0.07 0.08
West South Central 0.07 0.07 0.07 0.08 0.06 0.08
Mountain 0.04 0.09 * 0.05 0.04 0.04 0.07
Pacific 0.05 0.07 0.05 0.06 0.05 0.05
Observations in Family Tree database 4,804 113 2,599 406 2,752 195
Notes: *** p<0.01, ** p<0.05, * p<0.1

Step I Feigenbaum ABE
Status of link compared with FamilySearch database



28 
 

Table 5: Accuracy, Step I and Step II 

Step I Step II Total
Confirmed links 46,342 104,932 151,274

Agreement rate with FamilyTree database 97.7 98.0 97.9
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Table 6: Representivity, Step I and Step II combined by sex. 

Census Step I+II Census Step II
Age in 1910 31.76 30.85 *** 31.19 32.42 ***
7-20 0.33 0.41 *** 0.34 0.37 ***
21-45 0.44 0.35 *** 0.44 0.38 ***
46-60 0.15 0.17 *** 0.14 0.19 ***
61+ 0.08 0.07 *** 0.08 0.06 ***

Race
White 0.89 0.94 *** 0.88 0.94 ***
Black 0.11 0.06 *** 0.11 0.06 ***
Other 0.01 0.00 *** 0.00 0.00 ***

U.S. born 0.87 0.89 *** 0.89 0.87 ***

Household size 6.00 6.55 *** 5.72 6.71 ***
1 0.04 0.01 *** 0.02 0.00 ***
2-3 0.21 0.12 *** 0.23 0.10 ***
4-6 0.42 0.41 0.43 0.41 ***
7-10 0.27 0.38 *** 0.26 0.41 ***
11+ 0.07 0.08 *** 0.06 0.08 ***

Resides with spouse 0.43 0.39 *** 0.45 0.47 ***
Resides with parent(s) 0.39 0.56 *** 0.39 0.49 ***

Married 0.46 0.40 *** 0.47 0.48 ***

Socioeconomic index* 23.41 23.27 25.03 29.23 ***
1-9 0.14 0.11 *** 0.04 0.02 ***
10-14 0.19 0.19 *** 0.02 0.01 ***
15-25 0.14 0.17 *** 0.07 0.07 ***
26+ 0.17 0.16 *** 0.05 0.05 ***
Missing 0.36 0.37 0.81 0.85 ***

Resides in rural area 0.56 0.59 *** 0.54 0.57 ***
Lifetime migrant (only for U.S. born) 0.26 0.19 *** 0.24 0.20 ***

Region of residence
New England 0.07 0.08 *** 0.07 0.08 ***
Mid-Atlantic 0.19 0.19 ** 0.20 0.20 **
East North Central 0.20 0.23 *** 0.20 0.24 ***
West North Central 0.13 0.16 *** 0.13 0.16 ***
South Atlantic 0.13 0.12 *** 0.14 0.11 ***
East South Central 0.09 0.09 *** 0.09 0.08 ***
West South Central 0.10 0.08 *** 0.09 0.07 ***
Mountain 0.03 0.02 *** 0.03 0.02 ***
Pacific 0.05 0.04 *** 0.04 0.03 ***
Observations 255,334 92,335 244,666 58,939
Notes: * Mean SEI score only calcucated for individuals with non-missing values
*** p<0.01, ** p<0.05, * p<0.1

WomenMen
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Figure 1: Sample potential match data, only displaying (theoretically) immutable characteristics 

 

Last name First name Middle name Birth year Last name First name Middle name Birth year
Thomas Arthur P 1892 Thomas Arthur F 1891
Thomas Arthur P 1892 Thomas Arthur 1890
Thomas Arthur P 1892 Thomas Arthur H 1892
Thomas Arthur P 1892 Thomas Arthur J 1892
Thomas Arthur P 1892 Thomsen Arthur H 1894
Thomas Arthur P 1892 Thomson Arthur 1893
Thomas Arthur P 1892 Thompson Arthur 1891
Thomas Arthur P 1892 Thompson Arthur 1892

1900 1910
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Figure 2: Sample potential match data, extended with father’s first name 

Father's first name
Last name First name Middle name Birth year Last name First name Middle name Birth year 1900 1910

Thomas Arthur P 1892 Thomas Arthur F 1891 Benjamin H Benjiman H
Thomas Arthur P 1892 Thomas Arthur 1890 Benjamin H
Thomas Arthur P 1892 Thomas Arthur H 1892 Benjamin H Edward J
Thomas Arthur P 1892 Thomas Arthur J 1892 Benjamin H Adrew D
Thomas Arthur P 1892 Thomsen Arthur H 1894 Benjamin H Christian
Thomas Arthur P 1892 Thomson Arthur 1893 Benjamin H Thos
Thomas Arthur P 1892 Thompson Arthur 1891 Benjamin H Edward J
Thomas Arthur P 1892 Thompson Arthur 1892 Benjamin H Soren

1900 1910
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Figure 3: Using confirmed individual links to define universe of potential matches for Step II 

Last name First name Birth year Role Last name First name Birth year Role
Corcoran Michael 1875 Head → Corcoran Michael 1875 Head
Corcoran Judy 1880 Spouse Corcoran Judith 1878 Spouse
Corcoran John M 1898 Son Corcoran Mike 1899 Son
Corcoran Philip 1895 Son Corcoran Phil 1897 Son
Corcoran Lydia 1984 Daughter Corcoran Lydia 1895 Daughter

1900 1910



33 
 

Figure 4: Operationalization of competing household match variable 

 

 

Last name First name Birth year Last name First name Birth year
Frye Stephen 1862 Frye Stephen 1862
Frye Jonah 1896 Frye Jonathan 1898
Frye Jonathan 1899

1900 1910
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Table A1: Logit estimates, Step I 
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β s.e. P>|z| lower 95% upper 95%
Variable 

mean

1900 individual and 1910 potential match first name Jaro-Winkler score 8.63809 1.875 0.000 4.964 12.313 0.88
1900 individual and 1910 potential match standardized first name Jaro-Winkler score 3.80119 1.365 0.005 1.127 6.476 0.88

1900 individual and 1910 potential match last name Jaro-Winkler score 23.50728 1.315 0.000 20.930 26.084 0.78

1900 individual and 1910 potential match first name Soundex score 0.60182 0.268 0.025 0.077 1.126 0.47
1900 individual and 1910 potential match last name Soundex score 1.24501 0.220 0.000 0.814 1.676 0.10

Birth year difference between 1900 individual and 1910 potential match
0 ref 0.15
1 -0.38058 0.152 0.012 -0.679 -0.083 0.29
2 -1.53711 0.190 0.000 -1.909 -1.166 0.29
3 -3.23388 0.291 0.000 -3.803 -2.664 0.28

Place of birth of 1900 individual:
New England ref 0.05
Mid-Atlantic 0.23970 0.341 0.483 -0.429 0.909 0.13

East North Central 1.33702 0.301 0.000 0.748 1.926 0.16
West North Central 1.95898 0.295 0.000 1.381 2.537 0.13

South Atlantic 0.46402 0.300 0.122 -0.124 1.052 0.13
East South Central 1.55907 0.323 0.000 0.926 2.192 0.10

West South Central 1.91913 0.345 0.000 1.243 2.595 0.07
Mountain 1.40185 0.307 0.000 0.800 2.003 0.02

Pacific 1.21746 0.395 0.002 0.443 1.992 0.02
North America/UK/Ireland/Nordic 0.81646 0.411 0.047 0.010 1.623 0.13

Rest of Europe 1.86893 0.421 0.000 1.044 2.694 0.05
Rest of World 1.37674 0.477 0.004 0.442 2.312 0.02

1900 individual is not second generation immigrant ref 0.76
1900 individual is second generation immigrant 0.27565 0.171 0.106 -0.059 0.610 0.24

Difference between 1900 individual's and 1910 potential match's immigration year is less than or equal to 5 years (includes natives) ref 0.87
Difference between 1900 individual's and 1910 potential match's immigration year is 6-10 years -0.61866 0.499 0.215 -1.597 0.359 0.04

Difference between 1900 individual's and 1910 potential match's immigration year is 11 or more years -1.40227 0.414 0.001 -2.213 -0.592 0.09

1900 individual race: White ref 0.90
1900 individual race: Non-white 1.47032 1.238 0.235 -0.955 3.896 0.10

1910 potential match is same race
No ref 0.12

Yes 4.09470 1.051 0.000 2.034 6.155 0.88

Interaction: 1900 id and 1910 potential match are non-white -2.11316 1.259 0.093 -4.580 0.354

Distance between county of residence of 1900 individual and 1910 potential match -0.00202 0.000 0.000 -0.002 -0.002 630.5
Distance between county of residence of 1900 individual and 1910 potential match, squared 0.00000 0.000 0.000 0.000 0.000  
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Number of potential matches for 1900 id -0.00566 0.001 0.000 -0.007 -0.004 499.6
Number of potential matches for 1900 id, squared 0.00000 0.000 0.000 0.000 0.000

Number of same name individuals in 1900 (+birth place and +/-3 years year of birth) -0.02968 0.007 0.000 -0.043 -0.016 23.1
Number of same name individuals in 1900, squared 0.00003 0.000 0.000 0.000 0.000

Less than or equal to one 1910 potential match with the exact same first and last name as the 1900 individual ref 0.60
At least one 1910 potential match with the exact same first and last name as the 1900 individual -2.73271 0.186 0.000 -3.097 -2.368 0.40

Father not present in household of 1900 individual and 1910 potential match ref 0.72
Father present, no mismatch on place of birth, age or relationship to id -2.38217 0.474 0.000 -3.311 -1.454 0.04

Father present, mismatch on place of birth, age or relationship to id -3.34452 0.449 0.000 -4.225 -2.465 0.24

Father of 1900 individual and 1910 potential match first name Jaro-Winkler score 5.74609 0.525 0.000 4.718 6.774 0.10

Mismatch on birth place of father of 1900 individual and 1910 potential match ref 0.49
Match on birth place of father of 1900 individual and 1910 potential match 0.96987 0.175 0.000 0.627 1.313 0.51

Mother not present in household of 1900 individual and 1910 potential match ref 0.68
Mother present, no mismatch on place of birth, age or relationship to id -2.90439 0.480 0.000 -3.845 -1.964 0.05

Mother present, mismatch on place of birth, age or relationship to id -4.34448 0.442 0.000 -5.210 -3.479 0.27

Mother of 1900 individual and 1910 potential match first name Jaro-Winkler score 5.79514 0.550 0.000 4.717 6.873 0.14

Mismatch on birth place of mother of 1900 individual and 1910 potential match ref 0.47
Match on birth place of mother of 1900 individual and 1910 potential match 0.51139 0.181 0.005 0.157 0.865 0.53

Spouse not present in household of 1900 individual and 1910 potential match ref 0.81
Spouse present, no mismatch on place of birth, age or marriage duration -3.59735 0.485 0.000 -4.548 -2.647 0.04

Mother present, mismatch on place of birth, age or marriage duration -5.60078 0.517 0.000 -6.615 -4.587 0.14

Spouse of 1900 individual and 1910 potential match first name Jaro-Winkler score 7.88033 0.610 0.000 6.685 9.075 0.09

Middle initial of 1900 individual and 1910 potential match is present and matches ref 0.02
Middle initial of 1900 individual and 1910 potential match is present and mismatches -4.02053 0.310 0.000 -4.628 -3.413 0.18

Middle initial of 1900 individual or 1910 potential match is missing -2.85310 0.215 0.000 -3.275 -2.432 0.80

1900 individual and 1910 potential match shares less than 5% of neighbors ref 0.99
1900 individual and 1910 potential match shares at least 5% of neighbors 2.94884 0.183 0.000 2.590 3.308 0.01

1900 individual and 1910 potential match street name Jaro-Winkler score less than 0.9 (or missing) ref 1.00
1900 individual and 1910 potential match street name Jaro-Winkler score at least 0.9 2.60080 0.737 0.000 1.156 4.046 0.00

Relative not present in household of 1900 individual and 1910 potential match ref 0.93
Relative present in household of 1900 individual and 1910 potential match 2.72318 0.303 0.000 2.129 3.317 0.07

Unrelated household member not present in household of 1900 individual and 1910 potential match ref 0.98
Unrelated household member present in household of 1900 individual and 1910 potential match -0.28504 1.392 0.838 -3.013 2.442 0.02

Intercept -39.67307 2.105 0.000 -43.798 -35.548
N

Pseudo R2
221,388
0.8812  
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Table 2: Logit estimates, Step II 
β s.e. P>|z| lower 95% upper 95%

Variable 
mean

1900 individual and 1910 potential match first name Jaro-Winkler score 2.026 0.835 0.015 0.389 3.663 0.52
1900 individual and 1910 potential match standardized first name Jaro-Winkler score 4.427 0.836 0.000 2.788 6.065 0.53

1900 individual and 1910 potential match last name Jaro-Winkler score 4.338 0.559 0.000 3.243 5.434 0.87

Birth year difference between 1900 individual and 1910 potential match
0 ref 0.10
1 -0.720 0.234 0.002 -1.179 -0.262 0.18
2 -1.813 0.274 0.000 -2.350 -1.276 0.11
3 -3.813 0.360 0.000 -4.519 -3.107 0.10
4 -3.504 0.408 0.000 -4.304 -2.705 0.09
5 -3.885 0.409 0.000 -4.687 -3.084 0.08

6-10 -4.862 0.330 0.000 -5.510 -4.215 0.34

1900 individual is foreign born 0.875 0.821 0.286 -0.734 2.485 0.08
Place of birth of 1900 individual is the same as for 1910 potential match 1.418 0.366 0.000 0.701 2.136 0.79

Interaction: 1900 individual is foreign born & Place of birth of 1900 individual is the same as for 1910 potential match -0.868 0.893 0.331 -2.618 0.882

Race of 1900 individual is the same as for 1910 potential match 0.841 1.444 0.561 -1.990 3.671 0.99

Sex of 1900 individual is the same as for 1910 potential match 3.026 0.310 0.000 2.418 3.634 0.59

Change in marriage duration (if married in both censuses) between 1900 individual and 1910 potential match is between 6-14 years 1.283 0.377 0.001 0.545 2.021 0.15

1900 individual is household head or spouse ref 0.18
1900 individual is child or child-in-law 0.892 0.560 0.111 -0.206 1.989 0.72

1900 individual has other relationship to household head 1.054 0.625 0.092 -0.171 2.279 0.09

Relationship to household head of 1900 individual is the same as for 1910 potential match 2.361 0.485 0.000 1.410 3.313 0.73
Interaction: Relationship to household head of 1900 individual is the same as for 1910 potential match & 1900 individual is child or child-in-law -1.314 0.619 0.034 -2.527 -0.100

Interaction: Relationship to household head of 1900 individual is the same as for 1910 potential match & 1900 individual has other relationship to household head -1.682 1.002 0.093 -3.646 0.282

Highest Jaro-Winkler score of competing match in household, conditional on +/- 10 year birth year difference -0.763 0.403 0.058 -1.553 0.026 0.45
Highest Jaro-Winkler score of competing match in household, unconditional -2.953 0.474 0.000 -3.883 -2.023 0.69

No first name ref 0.02
First name initial of 1900 individual matches first or middle name initial of 1910 potential match 0.698 1.375 0.612 -1.998 3.393 0.29

First name initial of 1900 individual mismatches both first and (if available) middle name initial of 1910 potential match -1.576 1.353 0.244 -4.228 1.075 0.71

No middle initial ref 0.64
Middle name initial of 1900 individual matches first or middle name initial of 1910 potential match 1.115 0.249 0.000 0.628 1.603 0.09

Middle name initial of 1900 individual mismatches both first and (if available) middle name initial of 1910 potential match -0.545 0.218 0.012 -0.973 -0.118

Intercept -11.625 2.136 0.000 -15.811 -7.438
N

Pseudo R2
10,101
0.8965  
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Table A3: Probit estimates, Feigenbaum machine learning model 

β s.e.

First and Last name match 0.452 (0.0696)

1900 individual and 1910 potential match first name Jaro-Winkler score 5.774 (0.445)
1900 individual and 1910 potential match last name Jaro-Winkler score 7.402 (0.360)

Birth year difference between 1900 individual and 1910 potential match
0 ref
1 -0.234 (0.0429)
2 -0.894 (0.0565)
3 -1.356 (0.0742)

1900 individual and 1910 potential match first name Soundex match 0.034 (0.0804)
1900 individual and 1910 potential match last name Soundex match 0.532 (0.0643)

Number of potential matches for 1900 id -0.004 (0.000189)
Number of potential matches for 1900 id, squared 0.000 (5.63e-08)

Multiple matches for first and last name -1.307 (0.0688)

First letter of first name matches 0.695 (0.133)
First letter of last name matches 0.358 (0.0849)
Last letter of first name matches -0.051 (0.0710)
Last letter of last name matches 0.316 (0.0581)

Middle initial match, if there is a middle initial 1.001 (0.0625)

Intercept -14.590 (0.512)
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Table A4: Results from manual accuracy checks of links, by category 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step I Feigenbaum ABE
All links 90 68 82
Identical links declared by both algorithms 96 96
Only linked in Step I 94 90
Only linked by Feigenbaum/ABE 14 32
Linked by both algorithms, different links
Step I 92 78
Feigenbaum/ABE 0 8
Note: For each category, 50 cases were randomly ectracted and manually evaluated 
using Ancestry.com. The handlinker had no knowledge to which category any given 
case belonged.
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