AccScience Publishing / IJB / Volume 4 / Issue 2 / DOI: 10.18063/ijb.v4i2.144
Cite this article
54
Download
1385
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Fabrication of biomimetic placental barrier structures within a microfluidic device utilizing two-photon polymerization

Denise Mandt1,2 Peter Gruber1,2 Marica Markovic1,2 Maximillian Tromayer2,3 Mario Rothbauer3 Sebastian Rudi Adam Kratz3 Syed Faheem Ali3 Jasper Van Hoorick4,5 Wolfgang Holnthoner2,6 Severin Mühleder2,6 Peter Dubruel4 Sandra Van Vlierberghe4,5 Peter Ertl2,3 Robert Liska2,3 Aleksandr Ovsianikov1,2*
Show Less
1 Institute of Materials Science and Technology, TU Wien, Vienna Austria
2 Austrian Cluster for Tissue Regeneration, Austria
3 Institute of Applied Synthetic Chemistry, TU Wien, Vienna Austria
4 Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
5 Brussels Photonics, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussels, Belgium
6 Ludwig Boltzmann Institute of Experimental and Clinical Traumatology, Vienna, Austria
© Invalid date by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The placenta is a transient organ, essential for development and survival of the unborn fetus. It interfaces the body of the pregnant woman with the unborn child and secures transport of endogenous and exogenous substances. Maternal and fetal blood are thereby separated at any time, by the so-called placental barrier. Current in vitro approaches fail to model this multifaceted structure, therefore research in the field of placental biology is particularly challenging. The present study aimed at establishing a novel model, simulating placental transport and its implications on development, in a versatile but reproducible way. The basal membrane was replicated using a gelatin-based material, closely mimicking the composition and properties of the natural extracellular matrix. The microstructure was produced by using a high-resolution 3D printing method – the two-photon polymerization (2PP). In order to structure gelatin by 2PP, its primary amines and carboxylic acids are modified with methacrylamides and methacrylates (GelMOD-AEMA), respectively. High-resolution structures in the range of a few micrometers were produced within the intersection of a customized microfluidic device, separating the x-shaped chamber into two isolated cell culture compartments. Human umbilical-vein endothelial cells (HUVEC) seeded on one side of this membrane simulate the fetal compartment while human choriocarcinoma cells, isolated from placental tissue (BeWo B30) mimic the maternal syncytium. This barrier model in combination with native flow profiles can be used to mimic the microenvironment of the placenta, investigating different pharmaceutical, clinical and biological scenarios. As proof-of-principle, this bioengineered placental barrier was used for the investigation of transcellular transport processes. While high molecular weight substances did not permeate, smaller molecules in the size of glucose were able to diffuse through the barrier in a time-depended manner. We envision to apply this bioengineered placental barrier for pathophysiological research, where altered nutrient transport is associated with health risks for the fetus.

Keywords
high resolution 3D printing
placental barrier
model
microstructure
two-photon polymerization
References

[1]Lee J S, Romero R, Han Y M, et al., 2015, Placenta-ona-chip: A novel platform to study the biology of the human placenta. J Matern Neonatal Med, 29(7): 1046–1054. http://dx.doi.org/10.3109/14767058.2015.1038518 
[2]Ren K, Zhou J, Wu H, 2013, Materials for microfluidic chip fabrication. Acc Chem Res, 46(11): 2396–2406. http://dx.doi.org/10.1021/ar300314s
[3]Blundell C, Tess E R, Schanzer A S R, et al., 2016, A microphysiological model of the human placental barrier. Lab Chip, 16(16): 3065–3073. http://dx.doi.org/10.1039/c6lc00259e
[4]Sakolish C M, Esch M B, Hickman J J, et al., 2016, Modeling barrier tissues in vitro: Methods, achievements, and challenges. EBioMedicine, 5(C): 30–39. http://dx.doi.org/10.1016/j.ebiom.2016.02.023
[5]Djagny K B, Wang Z, Xu S, et al., 2001, Gelatin: A valuable protein for food and pharmaceutical industries. Crit Rev Food Sci Nutr, 41(6): 481–492. http://dx.doi.org/10.1080/20014091091904
[6]Peinemann K V, Nunes S P, 2007, Application of membranes in tissue engineering and biohybrid organ technology. Membrane technology: Membranes for life sciences, 1st edition, pp. 343, 2007. http://dx.doi.org/10.1002/9783527631360.ch8
[7]Van Den Bulcke A I, Bogdanov B, De Rooze N, et al., 2000, Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules, 1(1): 31–38. http://dx.doi.org/10.1021/bm990017d
[8]Ovsianikov A, Mironov V, Stampfl J, et al., 2012, Engineering 3D cell-culture matrices: Multiphoton pro­cessing technologies for biological & tissue engineering applications. Expert Rev Med Devices, 9(6): 613–633. http://dx.doi.org/10.1586/erd.12.48
[9]Hölzl K, Lin S, Tytgat L, et al, 2016, Bioink properties before, during and after 3D bioprinting. Biofabrication, 8(3): 032002. http://dx.doi.org/10.1088/1758-5090/8/3/032002
[10]Van Hoorick J, Gruber P, Markovic M, et al., 2017, Cross-linkable gelatins with superior mechanical properties through carboxylic acid modification: Increasing the two-photon polymerization potential. Biomacromolecules, 18(10): 3260–3272. http://dx.doi.org/10.1021/acs.biomac.7b00905
[11]Tayalia P, Mendonca C R, Baldacchini T, et al., 2008, 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv Mater, 20(23): 4494–4498. http://dx.doi.org/10.1002/adma.200801319
[12]Paz V F, Emons M, Obata K, et al., 2012, Development of functional sub-100 nm structures with 3D two-photon polymerization technique and optical methods for characterization. J Laser Appl, 24(4): 293–301. http://dx.doi.org/10.2351/1.4712151
[13]Stampfl J, Liska R, Ovsinikov A, 2016, Multiphoton lithography: Techniques, materials, and applications. in Stampfl J, Liska R, Ovsinikov A, (Eds.) John Wiley & Sons, ISBN: 978-3-527-33717-0
[14]Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med, 6(2): 0210011–210017. http://dx.doi.org/10.1115/1.4031466
[15]Ovsianikov A, Muehleder S, Torgersen T, et al., 2014, Laser photofabrication of cell-containing hydrogel constructs. Langmuir, 30(13): 3787–3794. http://dx.doi.org/10.1021/la402346z
[16]Faller A, Schünke M, Schünke G, et al., 2012, Fortpflanzung, Entwikclung und Geburt [in German]. Reproduction, development and birth. in Der Körper des Menschen, Stuttgart: Georg Thieme Verlag, 16th edition, pp. 752ff, 2012.
[17]Desoye G, Gauster M, Wadsack C, et al., 2011, Placental transport in pregnancy pathologies. Am J Clin Nutr,  94(6): 1896–1902. http://dx.doi.org/10.3945/ajcn.110.000851
[18]Gallo L A, Barrett H L, Dekker N M, 2016, Review: Placental transport and metabolism of energy substrates in maternal obesity and diabetes. Placenta, 54: 59–67. http://dx.doi.org/10.1016/j.placenta.2016.12.006
[19]Gaccioli F, Lager S, Powell T L, et al., 2012, Placental transport in response to altered maternal nutrition. J Dev Orig Health Dis, 4(2): 1–15. http://dx.doi.org/10.1017/S2040174412000529
[20]Gaither K, Quraishi A N, Illsley N P, 2016, Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J Clin Endocrinol Metab, 84(2): 695–701. http://dx.doi.org/10.1210/jcem.84.2.5438
[21]Jansson T, Ekstrand Y, Wennergren M, et al., 2001, Placental glucose transport in gestational diabetes mellitus. Am J Obstet Gynecol, 184(2): 111–116. http://dx.doi.org/10.1067/mob.2001.108075
[22]Miura S, Sato K, Kato-Negishi M, et al., 2015, Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun, 6(12): 8871. http://dx.doi.org/10.1038/ncomms9871
[23]Caplin J D, 2016, Utilizing microfluidic technology to replicate placental functions in a drug testing model. 2016. Global Congress on NanoEngineering for Medicine and Biology.
[24]Chen S, Zhang Q, Nakamoto T, et al., 2016, Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Eng Part C Methods, 22(3): 189–198.
[25]Gorgieva S, Kokol V, 2011, Biomaterials and their biocompatibility: Review and perspectives. InTech, 1–36. 
[26]Markovic M, Van Hoorick J, Hölzl K, et al., 2015, Hybrid tissue engineering scaffolds by combination of three-dimensional printing and cell photoencapsulation. J Nanotechnol Eng Med, 6(2): 1–7. http://dx.doi.org/10.1115/1.4031466
[27]Van Hoorick J, Gruber P, Markovic M, et al., 2018, Highly reactive thiol-norbornene photo-click hydrogels: Toward improved processability. Macromolecular Rapid Commun: 1800181, http://dx.doi.org/10.1002/marc.201800181
[28]Nichol J W, Koshy S T, Bae H, et al., 2010, Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials, 31(21): 5536–5544. http://dx.doi.org/10.1016/j.biomaterials.2010.03.064
[29]Maquoi E, Noel A, Foidart J M, 1997, Matrix metallo­proteinases in choriocarcinoma cell lines: A potential regulatory role of extracellular matrix components. in Placental Molecules in Hemodynamics, Transport, and Cellular Regulation, T. Hata, M. Takayama, I. Taki, and J.-M. Foidart, pp. 585, 1997.
[30]Ruoslahti E, Pierschbacher M D, 1897, New perspectives in cell adhesion: RGD and integrins. Am Assoc Adv Sci, 238(4826): 491–497. http://dx.doi.org/10.1126/science.2821619
[31]PeproTech, 2014, Endothelial cell media-maintenance media for endothelial cells.
[32]Seeger J M, Klingman N, et al., 1985, Improved endothelial cell seeding with cultured cells and fibronectin-coated grafts. J Surg Res, 38(6): 641–647.
[33]Ruoslahti E, 1984, Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev, 3(1): 43–51.
[34]Wang Q, 2017, Fabrication of photo-mediated biomaterial scaffolds. in Smart Materials for Tissue Engineering: Fundamental Principles, Q. Wang, Ed. 2017.
[35]Ren K, Zhou J, Wu H, 2013, Materials for microfluidic chip fabrication. Acc Chem Res, 46(11): 2396–2406. https://dx.doi.org/10.1021/ar300314s
[36]Dendukuri D, Panda P, Haghgooie R, et al., 2008, Modeling of oxygen-inhibited free radical photopolymerization in a PDMS microfluidic device. Macromolecules, 41(22): 8547–8556.
[37]Altannavch T S, Roubalová K,  Era P K U Č, 2004, Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res, 53: 77–82. Avaliable from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.655.1274&rep=rep1&type=pdf

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing