Photophysics of Caffeic, Ferulic and Sinapic Acids with α- and β-Cyclodextrins: Spectral and Molecular Modeling Studies

Article Preview

Abstract:

Encapsulation of caffeic acid (CAA), ferulic acid (FEA) and sinapic acid (SIA) molecules with α-CD and β-CD was studied by UV-visible, fluorescence, time-resolved fluorescence and molecular modelling techniques. This analysis reports the probing of cyclodextrin (CD) cavities with the help of dual emission properties of the above hydroxycinnamic acids (HCAs) in aqueous solution. The normal Stokes shifted bands originated from the locally excited state and the large Stokes shifted bands due to the emission from an intramolecular charge transfer (ICT) state were observed. The ratio of the TICT emission to the normal emission increased with α-CD and β-CD concentration. CD studies indicates (i) HCAs forms 1:1 inclusion complex and (ii) acrylic group present in the interior part of the CD cavity and OH/OCH3 groups present in the upper part of the CD cavity. pH studies suggest proton transfer reactions follow the same trend in these molecules. A mechanism is proposed to explain the inclusion process. PM3 optimizations were also carried out to assign the encapsulation of the HCA molecules.

Info:

Pages:

37-51

Citation:

Online since:

January 2017

Export:

* - Corresponding Author

[1] M.J. Jenita, T. Mohandoss, N. Rajendiran, Spectral and molecular modeling studies on hydroxy benzaldehydes with native and modified Cyclodextrins, J. Fluores. 24 (2014) 695-707.

DOI: 10.1007/s10895-013-1340-5

Google Scholar

[2] N. Rajendiran, R.K. Sankaranarayanan, Nanoscale self assembly of cyclodextrin capped 4-aminobenzophenone via non-covalent interactions, J. Mol. Liq. 206 (2015) 218-227.

DOI: 10.1016/j.molliq.2015.02.023

Google Scholar

[3] N. Rajendiran, R.K. Sankaranarayanan, J. Saravanan, Nanochain and vesicles formed by inclusion complexation of 4, 4'-diaminobenzanilide with Cyclodextrins, J. Exper. Nanosciec. 10 (2015) 880-899.

DOI: 10.1080/17458080.2014.930523

Google Scholar

[4] N. Rajendiran, G. Venkatesh, R.K .Sankaranarayanan, Dual fluorescence of omeprazole: Effect of solvents and pH, Phys. Chem. Liq. 52 (2014) 738-750.

DOI: 10.1080/00319104.2014.924379

Google Scholar

[5] S. Kovendhan, G. Venkatesh, N. Rajendiran, Intramolecular charge transfer effects on 3,5-diaminobenzoic acid – Effect of solvents, pH and β-CD, J. Ind.Chem. Society. 91 (2014) 695-704.

Google Scholar

[6] M. Jude Jenita et al., TICT effects on fast violet B and fast blue RR: Effect of HP-α-CD and HP-β-CDs, J.Molecular Liquids. 178 (2013) 160-167.

DOI: 10.1016/j.molliq.2012.11.033

Google Scholar

[7] T. Mohandoss, J. Thulasidhasan, Dual Fluorescence of 4,4'-sulfonyldiphenol, 3,3'–dimethyl 4,4'-sulfonyldiphenol, 4,4'-sulfonyldibenzoic acid: Effects of cyclodextrin complexation, Canadian Chemical Transactions. 3 (2015) 319-332.

DOI: 10.13179/canchemtrans.2015.03.02.0225

Google Scholar

[8] S. Panja, S.Chakravorti, Photophysics of 4-(N,N-dimethylamino)cinnamaldehyde/α-cyclodextrin inclusion complex, Spectrochimica Acta Part A. 58 (2002) 113-122.

DOI: 10.1016/s1386-1425(01)00522-4

Google Scholar

[9] P.R. Bangal, S. Panja, S.Chakravorti, Excited state photodynamics of 4-N, N-dimethylamino cinnamaldehyde:: A solvent dependent competition of TICT and intermolecular hydrogen bonding, J. Photochem. Photobiol. A Chem. 139 (2001) 5-16.

DOI: 10.1016/s1010-6030(00)00423-8

Google Scholar

[10] S. Panja, P.R. Bangal, S.Chakravorti, Modulation of photophysics due to orientational selectivity of 4-N, N-dimethylamino cinnamaldehyde β-cyclodextrin inclusion complex in different solvents, Chem. Phys. Lett. 329 (2000) 377-385.

DOI: 10.1016/s0009-2614(00)01053-8

Google Scholar

[11] S.Panja, S.Chakravorti, Dynamics of twisted intramolecular charge transfer process of 4-N, N-dimethylaminocinnamic acid in α-cyclodextrin environment, Chem. Phys. Lett. 336 (2001) 57-64.

DOI: 10.1016/s0009-2614(01)00270-6

Google Scholar

[12] S. Hamai, K. Hari, 1H-NMR Study on Inclusion Modes of 2-Chloronaphthalene and α-Cyclodextrin in D2, Supramol. Chem. 10 (1998) 43-48.

Google Scholar

[13] A. Nag, K. Bhattacharya, Dual luminescence of dimethylaminobenzonitrile in γ-cyclodextrin. Environmental effects on twisted intramolecular charge-transfer phenomenon, J. Chem. Soc. Faraday Trans. 86 (1990) 53-54.

DOI: 10.1039/ft9908600053

Google Scholar

[14] S. Li, W.C. Purdy, Cyclodextrins and their applications in analytical chemistry, Chem. Rev. 92 (1992) 1457-1462.

Google Scholar

[15] K.A. Al-Hassan, The role of α-cyclodextrin cavity size on the fluorescence of 4-diethylaminobenzonitrile aqueous solution, Chem. Phys. Lett. 227 (1994) 527-532.

DOI: 10.1016/0009-2614(94)00853-1

Google Scholar

[16] Y. Matsushita, T. Hikida, TICT state formation in the 4'-dimethylaminoacetophenone–α-cyclodexdtrin inclusion complex, Chem. Phys. Lett. 290 (1998) 349-354.

DOI: 10.1016/s0009-2614(98)00507-7

Google Scholar

[17] Y.P. Sun, M.A. Fox, K.P. Johnston, Spectroscopic studies of p-(N, N-dimethylamino) benzonitrile and ethyl p-(N, N-dimethylamino) benzoate in supercritical trifluoromethane, carbon dioxide, and ethane, J. Am. Chem. Soc. 114 (1992) 1187-1192.

DOI: 10.1021/ja00030a010

Google Scholar

[18] Y.H. Kim et al., Observation of hydrogen-bonding effects on twisted intramolecular charge transfer of p-(N,N-diethylamino)benzoic acid in aqueous cyclodextrin solution, J. Phys. Chem. 100 (1996) 15670-15676.

DOI: 10.1021/jp9613652

Google Scholar

[19] K.S. Gould et al., Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn, J. Experimental Botany. 51 (2000) 1107-1115.

DOI: 10.1093/jexbot/51.347.1107

Google Scholar

[20] M.R. Olthof et al., Chlorogenic acid and caffeic acid are absorbed in humans, J. Nutr. 131 (2001) 66-71.

DOI: 10.1093/jn/131.1.66

Google Scholar

[21] N.R. Prasad et al., Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line, Mol. Cell. Biochem. 349 (2011) 11-19.

DOI: 10.1007/s11010-010-0655-7

Google Scholar

[22] M. Hirose et al., Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model, Carcinogenesis. 19 (1998) 207-212.

DOI: 10.1093/carcin/19.1.207

Google Scholar

[23] L. Elmarie van der Watt, J.C. Pretorius, Purification and identification of active antibacterial components in Carpobrotus edulis L, J. Ethnopharmacology. 76 (2001) 87-91.

DOI: 10.1016/s0378-8741(01)00197-0

Google Scholar

[24] B. Ibtissem, C. Abdelly, S. Sfar, Antioxidant and antibacterial properties, Adv. Chem. Engin. Science. 2 (2012) 359-365.

Google Scholar

[25] M.G. Pierre, M. Carole, Effect of wheat variety, farming site, and bread‐baking on total phenolics, Int. J. Food Science and Technology. 41 (2006) 329-332.

DOI: 10.1111/j.1365-2621.2005.01057.x

Google Scholar

[26] N. Rajendiran, M.J. Jenita, Encapsulation of 4-hydroxy-3-methoxy benzoic acid and 4-hydroxy-3,5-dimethoxy benzoic acid by native and modified Cyclodextrins, Spectrochimica Acta. 136 (2015) 1349–1357.

DOI: 10.1016/j.saa.2014.09.139

Google Scholar

[27] M.J. Jenita, A.A.M. Prabhu, N. Rajendiran, Encapsulation of 3,5-dihydroxybenzoic acid and 3,4,5-trihydroxybenzoic acid by α- and β-cyclodextrins: Spectral and theoretical studies, J. Indian Chem. Soc. 91 (2014) 1711-1730.

Google Scholar

[28] A.A.M. Prabhu, N. Rajendiran, Encapsulation of labetalol, and pseudoephedrine in β-CD cavity: Spectral and molecular modeling studies, J. Fluorescence. 22 (2012) 1461-1474.

DOI: 10.1007/s10895-012-1083-8

Google Scholar

[29] R.K. Sankaranarayanan et al., Inclusion complexation of 3,4,5-trihydroxybenzoic acid with β-CD at different pH, J. Inclusion Phenomena and Macrocyclic Chemistry. 67 (2010) 461-470.

DOI: 10.1007/s10847-009-9729-0

Google Scholar

[30] RN. Rajendiran, T. Balasubramanian, Intramolecular charge transfer effects on 4-hydroxy-3-methoxy benzaldehyde, Spectrochimica Acta A. 69 (2008) 822–829.

DOI: 10.1016/j.saa.2007.04.035

Google Scholar

[31] T. Stalin et al., A study on inclusion complex of 1,2,3-trihydroxybenzene with α- and β-CD, Indian J. Chemistry. 45 (2006) 1113–1120.

Google Scholar

[32] H.A. Benesi, J. Hildebrand, A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons, J. Am. Chem. Soc. 71 (1949) 2703-2707.

DOI: 10.1021/ja01176a030

Google Scholar

[33] Y.B. Jiang, X.J. Wang, Stoichiometric-dependent intramolecular charge transfer flourescence of p-dimethylaminochalcone in β-cyclodextrin host—guest systems, J. Photochem. Photobiol. A Chem. 81 (1994) 205-209.

DOI: 10.1016/1010-6030(94)03786-8

Google Scholar

[34] M.R. Guzzo et al., Study of the complexation of fisetin with cyclodextrins, J. Phys. Chem. A. 110 (2006) 10545-10551.

Google Scholar

[35] S. Chaudhuri, S. Chakraborty, P.K. Sengupta, Encapsulation of serotonin in β-cyclodextrin nano-cavities: Fluorescence spectroscopic and molecular modeling studies, J. Mol. Struct. 975 (2010) 160.

DOI: 10.1016/j.molstruc.2010.04.014

Google Scholar

[36] En-Cui Yang et al., Semi-empirical PM3 study upon the complexation of β-cyclodextrin with 4,4'-benzidine and o-tolidine, J. Mol. Struct. Theochem. 712 (2004) 75-79.

DOI: 10.1016/j.theochem.2004.08.045

Google Scholar

[37] M. Karelson, V.S. Lobanov, R. Katritzky, Quantum-Chemical Descriptors in QSAR/QSPR Studies, Chem. Rev. 96 (1996) 1027-1044.

DOI: 10.1021/cr950202r

Google Scholar

[38] W. Saenger, Cyclodextrin inclusion compounds in research and industry, Angew Chem. Int. Ed. Engl. 19 (1980)344 -362.

DOI: 10.1002/anie.198003441

Google Scholar

[39] C. Yan et al., A quantum-mechanical study on the complexation of β-cyclodextrin with quercetin, J. Mol. Struct. Theochem. 764 (2006)95-100.

Google Scholar

[40] K. Linderner, W. Saenger, Crystal and molecular structure of cyclohepta-amylose dodecahydrate, Carbohydr. Res. 99 (1982) 103-115.

DOI: 10.1016/s0008-6215(00)81901-1

Google Scholar

[41] T. Steiner, G. Koellner, Crystalline beta-cyclodextrin hydrate at various humidities: fast, continuous, and reversible dehydration studied by X-ray diffraction, J. Am. Chem. Soc. 116 (1994) 5122-5128.

DOI: 10.1021/ja00091a014

Google Scholar

[42] T. Heine et al., Structure and dynamics of β-cyclodextrin in aqueous solution at the density-functional tight binding level, J. Phys. Chem A. 111 (2007) 5648 -5655.

DOI: 10.1021/jp068988s

Google Scholar

[43] M.V. Rekharsky, Y. Inoue, Complexation thermodynamics of Cyclodextrins, Chem. Rev. 98 (1998) 1875-1918.

DOI: 10.1021/cr970015o

Google Scholar