Review


DOI :10.18017/iuitfd.315525   IUP :10.18017/iuitfd.315525    Full Text (PDF)

INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY

Gülsüm Kayman KürekçiMerve BunsuzGizem ÖnalPervin Rukiye Dinçer

Epigenetic mechanisms affect cellular gene expression levels independently from DNA sequence. Epigenetic modifications can cause heritable phenotypic changes by the influence of environmental factors such as toxicants, nutrition and stress. Specific epigenetic marks that escape embryonic epigenetic reprogramming may have a role in obesity, cancer and cardiovascular disease susceptibility through subsequent generations. Recent studies point out that epigenetic may be related with complex diseases with unknown etiopathology. In this review, we summarized the effects of environmental factors on epigenome, epigenetic inheritance mechanisms across generations and related pathologies. 

DOI :10.18017/iuitfd.315525   IUP :10.18017/iuitfd.315525    Full Text (PDF)

KAZANILMIŞ EPİGENETİK DEĞİŞİKLİKLERİN KALITIMI VE HASTALIKLARA YATKINLIKTAKİ ROLÜ

Gülsüm Kayman KürekçiMerve BunsuzGizem ÖnalPervin Rukiye Dinçer

DNA dizisinden bağımsız olarak hücrede gen ifadesini değiştiren epigenetik düzenlemeler, toksik maddeler, beslenme ve stres gibi çevresel faktörlerin etkisiyle fenotipte kalıcı değişikliklere neden olabilmektedir. Embriyonik dönemde epigenetik yeniden programlamadan kaçan bazı epigenetik işaretler, sonraki jenerasyonlara aktarılarak obezite, kanser ve kardiyovasküler hastalıklara yatkınlığın oluşmasında rol oynamaktadır. Son yıllarda yapılan çalışmalar, epigenetiğin etyopatolojisi tam olarak açıklanamayan kompleks hastalıklar ile ilişkili olduğuna işaret etmektedir. Bu derlemede, çevresel faktörlerin epigenom üzerindeki etkileri, bu etkilerin jenerasyonlar boyu aktarım mekanizmaları ve ilişkili olduğu patolojiler özetlenecektir.


PDF View

References

  • 1. Wang Y, Liu H, Sun Z. Lamarck rises from his grave: Parental environment‐induced epigenetic inheritance in model organisms and humans. Biological Reviews 2017. google scholar
  • 2. Heard E, Martienssen RA. Transgenerational epigenetic inheritance: Myths and mechanisms. Cell 2014; 157(1): 95-109. google scholar
  • 3. Weismann A. The germ plasm: A theory of heredity. 1893. google scholar
  • 4. Waddington C. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci USA 1939; 25(7): 299-307. google scholar
  • 5. Peaston AE, Whitelaw E. Epigenetics and phenotypic variation in mammals. Mamm Genome 2006; 17(5): 365-74. google scholar
  • 6. Nilsson EE, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res 2015; 165(1): 12-7. google scholar
  • 7. von Meyenn F, Reik W. Forget the parents: Epigenetic reprogramming in human germ cells. Cell 2015; 161(6): 1248-51. google scholar
  • 8. van der Heijden GW, Dieker JW, Derijck AA, Muller S, Berden JH, Braat DD, et al. Asymmetry in histone h3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 2005; 122(9): 1008-22. google scholar
  • 9. Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 2013; 339(6118): 448-52. google scholar
  • 10. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, et al. Histone methyltransferases g9a and glp form heteromeric complexes and are both crucial for methylation of euchromatin at h3-k9. Genes Dev 2005; 19(7): 815-26. google scholar
  • 11. Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48(6): 849-62. google scholar
  • 12. Nakamura T, Liu Y-J, Nakashima H, Umehara H, Inoue K, Matoba S, et al. Pgc7 binds histone h3k9me2 to protect against conversion of 5mc to 5hmc in early embryos. Nature 2012; 486(7403): 415-9. google scholar
  • 13. Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, et al. A maternal-zygotic effect gene, zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15(4): 547-57. google scholar
  • 14. Ratnam S, Mertineit C, Ding F, Howell CY, Clarke HJ, Bestor TH, et al. Dynamics of dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development. Dev Biol 2002; 245(2): 304-14. google scholar
  • 15. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of iaps to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003; 35(2): 88-93. google scholar
  • 16. D’Urso A, Brickner JH. Mechanisms of epigenetic memory. Trends Genet 2014; 30(6): 230-6. google scholar
  • 17. Bonasio R, Tu S, Reinberg D. Molecular signals of epigenetic states. Science 2010; 330(6004): 612-6. google scholar
  • 18. Sharma A. Transgenerational epigenetic inheritance: Focus on soma to germline information transfer. Prog Biophys Mol Biol 2013; 113(3): 439-46. google scholar
  • 19. Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature 2006; 442(7106): 1046-9. google scholar
  • 20. Burton NO, Burkhart KB, Kennedy S. Nuclear rnai maintains heritable gene silencing in caenorhabditis elegans. Proc Natl Acad Sci USA 2011; 108(49): 19683-8. google scholar
  • 21. Yao Y, Robinson AM, Zucchi FC, Robbins JC, Babenko O, Kovalchuk O, et al. Ancestral exposure to stress epigenetically programs preterm birth risk and adverse maternal and newborn outcomes. BMC Med 2014; 12(1): 121. google scholar
  • 22. Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsrnas contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016; 351(6271): 397-400. google scholar
  • 23. Čikoš Š, Veselá J, Il'ková G, Rehák P, Czikková S, Koppel J. Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev 2005; 71(2): 145-53. google scholar
  • 24. Nilsson E, Larsen G, Manikkam M, Guerrero-Bosagna C, Savenkova MI, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS One 2012; 7(5): e36129. google scholar
  • 25. Anway MD, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 2006; 147(6): s43-s9. google scholar
  • 26. Anway MD, Cupp AS, Uzumcu M, Skinner MK. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308(5727): 1466-9. google scholar
  • 27. Stouder C, Paoloni-Giacobino A. Transgenerational effects of the endocrine disruptor vinclozolin on the methylation pattern of imprinted genes in the mouse sperm. Reproduction 2010; 139(2): 373-9. google scholar
  • 28. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol a-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 2007; 104(32): 13056-61. google scholar
  • 29. Manikkam M, Haque MM, Guerrero-Bosagna C, Nilsson EE, Skinner MK. Pesticide methoxychlor promotes the epigenetic transgenerational inheritance of adult-onset disease through the female germline. PLoS One 2014; 9(7): e102091. google scholar
  • 30. Jimenez-Chillaron JC, Ramon-Krauel M, Ribo S, Diaz R. Transgenerational epigenetic inheritance of diabetes risk as a consequence of early nutritional imbalances. Proc Nutr Soc 2016; 75(01): 78-89. google scholar
  • 31. Wei Y, Yang C-R, Wei Y-P, Zhao Z-A, Hou Y, Schatten H, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA 2014; 111(5): 1873-8. google scholar
  • 32. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004; 20(1): 63-8. google scholar
  • 33. Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG. Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis 2006; 44(9): 401-6. google scholar
  • 34. Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150(11): 4999-5009. google scholar
  • 35.Torrens C, Brawley L, Dance CS, Itoh S, Poston L, Hanson MA. First evidence for transgenerational vascular programming in the rat protein restriction model. The Journal of Physiology 2002;543:41-2. google scholar
  • 36. Nestler EJ. Transgenerational epigenetic contributions to stress responses: Fact or fiction? PLoS Biol 2016; 14(3): e1002426. google scholar
  • 37. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science 1999; 286(5442): 1155-8. google scholar
  • 38. Franklin TB, Linder N, Russig H, Thöny B, Mansuy IM. Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One 2011; 6(7): e21842. google scholar
  • 39. Yuan T-F, Li A, Sun X, Ouyang H, Campos C, Rocha NB, et al. Transgenerational inheritance of paternal neurobehavioral phenotypes: Stress, addiction, ageing and metabolism. Mol Neurobiol 2016; 53(9): 6367-76. google scholar
  • 40. Rodgers AB, Morgan CP, Leu NA, Bale TL. Transgenerational epigenetic programming via sperm microrna recapitulates effects of paternal stress. Proc Natl Acad Sci USA 2015;112(44): 13699-704. google scholar
  • 41. Wu L, Lu Y, Jiao Y, Liu B, Li S, Li Y, et al. Paternal psychological stress reprograms hepatic gluconeogenesis in offspring. Cell Metab 2016; 23(4): 735-43. google scholar
  • 42. van Otterdijk SD, Michels KB. Transgenerational epigenetic inheritance in mammals: How good is the evidence? FASEB J 2016; 30(7): 2457-65. google scholar
  • 43. Lumey L, Stein AD, Kahn HS, Romijn J. Lipid profiles in middle-aged men and women after famine exposure during gestation: The dutch hunger winter families study. Am J Clin Nutr 2009; 89(6): 1737-43. google scholar
  • 44. Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: The dutch famine birth cohort study. Hum Biol 2000: 641-54. google scholar
  • 45. Dominguez-Salas P, Moore SE, Baker MS, Bergen AW, Cox SE, Dyer RA, et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat Commun 2014; 5: 3746. 46. Veurink M, Koster M. The history of des, lessons to be learned. Pharm World Sci 2005; 27(3): 139-43. google scholar
  • 47. Blatt J, Van Le L, Weiner T, Sailer S. Ovarian carcinoma in an adolescent with transgenerational exposure to diethylstilbestrol. J Pediatr Hematol Oncol 2003; 25(8): 635-6. google scholar
  • 48. Han T, Hart C, Haig C, Logue J, Upton M, Watt G, et al. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: The midspan family study. BMJ open 2015; 5(11): e007682. google scholar
  • 49. Whitelaw E. Disputing lamarckian epigenetic inheritance in mammals. Genome Biol 2015; 16(1): 60. google scholar
  • 50. Bohacek J, Mansuy IM. A guide to designing germline-dependent epigenetic inheritance experiments in mammals. Nat. Methods 2017; 14(3): 243-9. google scholar

Citations

Copy and paste a formatted citation or use one of the options to export in your chosen format


EXPORT



APA

Kürekçi, G.K., Bunsuz, M., Önal, G., & Rukiye Dinçer, P. (2017). INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY. Journal of Istanbul Faculty of Medicine, 80(1), 45-63. https://doi.org/10.18017/iuitfd.315525


AMA

Kürekçi G K, Bunsuz M, Önal G, Rukiye Dinçer P. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY. Journal of Istanbul Faculty of Medicine. 2017;80(1):45-63. https://doi.org/10.18017/iuitfd.315525


ABNT

Kürekçi, G.K.; Bunsuz, M.; Önal, G.; Rukiye Dinçer, P. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY. Journal of Istanbul Faculty of Medicine, [Publisher Location], v. 80, n. 1, p. 45-63, 2017.


Chicago: Author-Date Style

Kürekçi, Gülsüm Kayman, and Merve Bunsuz and Gizem Önal and Pervin Rukiye Dinçer. 2017. “INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY.” Journal of Istanbul Faculty of Medicine 80, no. 1: 45-63. https://doi.org/10.18017/iuitfd.315525


Chicago: Humanities Style

Kürekçi, Gülsüm Kayman, and Merve Bunsuz and Gizem Önal and Pervin Rukiye Dinçer. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY.” Journal of Istanbul Faculty of Medicine 80, no. 1 (Apr. 2024): 45-63. https://doi.org/10.18017/iuitfd.315525


Harvard: Australian Style

Kürekçi, GK & Bunsuz, M & Önal, G & Rukiye Dinçer, P 2017, 'INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY', Journal of Istanbul Faculty of Medicine, vol. 80, no. 1, pp. 45-63, viewed 26 Apr. 2024, https://doi.org/10.18017/iuitfd.315525


Harvard: Author-Date Style

Kürekçi, G.K. and Bunsuz, M. and Önal, G. and Rukiye Dinçer, P. (2017) ‘INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY’, Journal of Istanbul Faculty of Medicine, 80(1), pp. 45-63. https://doi.org/10.18017/iuitfd.315525 (26 Apr. 2024).


MLA

Kürekçi, Gülsüm Kayman, and Merve Bunsuz and Gizem Önal and Pervin Rukiye Dinçer. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY.” Journal of Istanbul Faculty of Medicine, vol. 80, no. 1, 2017, pp. 45-63. [Database Container], https://doi.org/10.18017/iuitfd.315525


Vancouver

Kürekçi GK, Bunsuz M, Önal G, Rukiye Dinçer P. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY. Journal of Istanbul Faculty of Medicine [Internet]. 26 Apr. 2024 [cited 26 Apr. 2024];80(1):45-63. Available from: https://doi.org/10.18017/iuitfd.315525 doi: 10.18017/iuitfd.315525


ISNAD

Kürekçi, GülsümKayman - Bunsuz, Merve - Önal, Gizem - Rukiye Dinçer, Pervin. INHERITANCE OF ACQUIRED EPIGENETIC MODIFICATIONS AND ITS ROLE IN DISEASE SUSCEPTIBILITY”. Journal of Istanbul Faculty of Medicine 80/1 (Apr. 2024): 45-63. https://doi.org/10.18017/iuitfd.315525



TIMELINE


Submitted13.07.2016
Accepted12.03.2017
Published Online31.03.2017

LICENCE


Attribution-NonCommercial (CC BY-NC)

This license lets others remix, tweak, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.


SHARE




Istanbul University Press aims to contribute to the dissemination of ever growing scientific knowledge through publication of high quality scientific journals and books in accordance with the international publishing standards and ethics. Istanbul University Press follows an open access, non-commercial, scholarly publishing.