Research Article
BibTex RIS Cite

Benchmarking of the Effects of Salinity on Antioxidant Enzymes Activities, Lipid Peroxidation and H2O2 Levels in the Leaves of Two Zinnia Species

Year 2021, Volume: 24 Issue: 1, 31 - 39, 28.02.2021
https://doi.org/10.18016/ksutarimdoga.vi.741890

Abstract

In this study, it was aimed to investigate the effects of salinity, which is an important environmental problem, in the cultivation of ornamental plants (such as zinnia) and irrigation with high salt water, especially on the antioxidant defense mechanism. For this purpose, the two Zinnia species were irrigated by different concentrations of saline water (50, 100, 150, 200 mM NaCl); effects of salinity on superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) lipid peroxidation (MDA) and hydrogen peroxide (H2O2) in the leaves were determined. The results showed that salinity conspicuously increased SOD, CAT, GR, H2O2 and MDA content at two Zinnia species compared to the control groups. It was found that SOD and CAT enzyme activities increased remarkably with 150 mM NaCl in both Zinnia species, but decreased with 200 mM NaCl.The highest GR enzyme activity was observed in 200mM salt concentration at Zinnia marylandica ‘Double Zahara Fire Improved’. MDA and H2O2 levels were observed higher in Zinnia elegans ‘Zinnita Scarlet’.To conclude; it may be said that these two Zinnia varieties can tolerate salt concentration up to 150 mM.

Supporting Institution

Çukurova University

Project Number

Project No: FBA-2019-11481.

Thanks

This work was supported Çukurova University, Project No: FBA-2019-11481. We thank the Prof.Dr.Serpil ÜNYAYAR, Girne American University/Turkish Republic of Northern Cyprus, for supports.

References

  • Abogadallah GM 2010. Antioxidative Defense under Salt Stress. Plant Signal Behav, 5(4): 369–374.
  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA 2017. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(18):1-38.
  • Aebi H 1974. Catalase. (In: Bergmeyer, H.U. (Eds.) Methods of Enzymatic Analysis, Verlag Chemie/Academic Press Inc., NewYork), 673-680.
  • Ahmad, P 2010. Growth and antioxidant responses in mustard (Brassica napus L.) plants subjected to combined effect of gibberellic acid and salinity. Archieves Agronomy and Soil Science, 56(5): 575-588.
  • Asada K 1999. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev PlantBio, 50(1):601–639.
  • Ashraf M 2009. Biotechnological Approach of Improving Plant Salt Tolerance Using Antioxidants as Markers. Biotechnology Advances, 27(1): 84-93.
  • Basu S, Aryadeep R, Progya PS, Dibyendu NS 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Journal of Plant Growth Regulation, 60(1): 51–59.
  • Beyer WF, Fridowich I, 1987. Assaying for Superokside Dismutase Activity: Some Large Consequences of Minor Changes in Conditions, 161(2): 559-566.
  • Bor M, Özdemir F, Türkan I 2003. The Effect of Salt Stress on Lipid Peroxidation and Antioxidants in Leaves Of Sugar Beet Beta vulgaris L. and Wild Beet Beta maritime L. Plant Science, 164(1): 77-84.
  • Bowler C, Van Montagu M, Inze D 1992. Superoxide Dismutase and Stress Tolerance. Annu. Rev Plant Physiol Plant Mol Biol., 43: 83–116.
  • Bradford MM 1976. A Rapid and Sensitice Method for the Quantification of Microgram Quantities of Protein, Utilizing the Principle of Protein-Dye Binding. Anal.Biochem., 72: 248-254.
  • Carlberg I, Mannervik B 1985. Glutathione Reductase. Method in Enzymology, 113: 484-490.
  • Cassaniti C., Leonardi C., and Flowers T.J., 2009. The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122(4): 586–593.
  • Cassaniti C, Romano D, Flowers TJ, 2012. The Response of Ornamental Plants to Saline Irrigation Water, (Irrigation-Water Management, Pollution and Alternative Strategies. Dr Iker Garcia-Garizabal (Ed.), ISBN: 978-953-51-0421-6, InTech).
  • Cassaniti C, Romano D, Hop MECM, Flowers TJ 2013. Growing Floricultural Crops with Brackish Water. Environ. Exp. Bot., 92: 165–175.
  • Çekiç ÖF, Ünyayar S 2006. Interactıve Effects of NaCl and CdCl2 on Antioxidant Enzyme Activities and Some Biochemical Compounds in Two Tomato Genotypes. Fresenius Environmental Bulletin, 15(7): 633-639.
  • Çevik S, Unyayar S 2015. The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. Suleyman Demirel University, J Nat Appl Sci., 19(1):91–97
  • Choudhury S, Panda P, Sahoo L, Panda SK 2013. Reactive Oxygen Species Signaling in Plants under Abiotic Stress. Plant Signal.Behav. 8, e23681.
  • García-Caparrós P, Lao M. Teresa 2018. The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia horticulturae, 240: 430-439.
  • Gill SS, Tajrishi M, Madan M 2013. A DESD-Box Helicase Functions in Salinity Stress Tolerance by Improving Photosynthesis and Antioxidant Machinery in Rice (Oryza sativa L. cv. PB1). Plant Mol Biol., 82(1-2): 1–22.
  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots under Drought. Plant Sci., 169(2): 313–321.
  • Gupta B, Huang B 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014:1-18.
  • Hasanuzzaman M, Hossain MA, Teixeira da Silva J, Fujita M 2012. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In: Venkateswarlu B., Shanker A., Shanker C., Maheswari M. (eds) Crop Stress and its Management:Perspectives and Strategies. Springer,Dordrecht.pp261-315. https://doi.org/10.1007/978-94-007-2220-0_8
  • Hernandez JA, Mullineaux P, Sevilla F 2000. Tolerance of Pea (Pisum sativum L.) to Long Term Stress is Associated with Induction of Antioxidant Defences. Plant, Cell & Environment, 23: 853-862.
  • Isayenkov SV, Maathuis F 2019. Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10:80.
  • Khan MH, Panda SK 2008. Alterations in Root Lipid Peroxidation and Antioxidative Responses in Two Rice Cultivars under NaCl-Salinity Stress. Acta Physiologiae Plantarum, 30: 81-89
  • Koksal N, Alkan A, Kulahlioglu I, Ertargin E, Karalar E 2016. Ion Uptake of Marigold under Saline Growth Conditions. SpringerPlus 5(139): 1-12.
  • Kusvuran S, Ellialtioglu S, Yasar F, Abak K 2007. Effects of salt stress on ion accumulations and some of the antioxidant enzymes activities in melon (Cucumis melo L.), Inter. J. Food Agric. Environ., 2(5): 351-354.
  • Läuchli A, Grattan S 2007. Plant Growth And Development Under Salinity Stress. In: Jenks M.A., Hasegawa P.M., Jain S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ 2019. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants (Basel, Swi), 8(4):94.
  • Li Y 2009. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Appl. Sci., 3(3): 171-176.
  • Liang W, Ma X, Wan P, Liu L 2018. Plant salt-tolerance: mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Liu, Soundararajan, P, Manivannan A 2019. Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. Plants, 8 (9): 307.
  • Loreto F, Velikova V 2001. Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiol., 127(4): 1781-1787.
  • Manivannan A, Soundararajan P, Arum, LS 2015. Silicon-Mediated Enhancement of Physiological and Biochemical Characteristics of Zinnia elegans ‘Dreamland Yellow’ Grown under Salinity Stress. Hortic. Environ. Biotechnol., 56(6): 721–731.
  • Mittler R 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci., 7(9): 405-410.
  • Mittova V, Tal M, Volokita M and Guy M 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115(3): 393-400.
  • Møller IM, Jensen PE, Hansson A 2007. Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol., 58: 459–481.
  • Moradi F, Ismail AM 2007. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Ann Bot., 99: 1161–1179.
  • Munns R 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167: 645-663.
  • Neto ADA, Prisco JT, Eneas Filho J, Abreu CEB, Gomes Filho E 2006. Effect of Salt Stress on Antioxidatif Enzymes and Lipid Peroxidation in Leaves and Roots of Salt-Tolerant and Salt-Sensitive Maize Genotypes. Environmental and Experimental Botany, 56: 87- 94.
  • Ohkawa H, Ohishi N, Yagi K 1979. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Biochemistry, 95: 351- 358.
  • Omari REL, Nhiri M 2015. Adaptive Response to Salt Stress in Sorghum (Sorghum bicolor). Am-Euras. J Agric and Environ Sci., 15(7): 1351-1360.
  • Özkoku G, Çevik S, Ünyayar S 2019. Dışsal Sentetik Inositol Türevi (Allo-İnositol) Uygulamasının Capsicum chinense Bitkisinin Tuz (Nacl) Toleransı Üzerine Etkisi. Anadolu Tarım Bilim. Derg./Anadolu J Agr Sci., 34: 319-326.
  • Panda SK and Khan MH 2004. Changes in growth and superoxide dismutase activity in Hydrilla verticillata L.under abiotic stress. Braz. J. Plant. Physiol., 16: 115-118.
  • Pandey S, Patel MK, Mishra A, Jha B 2015. Physio-Biochemical Composition and Untargeted Metabolomics of Cumin (Cuminum cyminum L.) Make It Promising Functional Food and Help in Mitigating Salinity Stress. PLoS ONE, 10(12): e0144469.
  • Pang CH, Wang BS 2008. Oxidative Stress and Salt Tolerance in Plants (U. Lüttge et al. (eds.), Progress in Botany 69. 231 © Springer-Verlag Berlin Heidelberg).
  • Parvin K, Hasanuzzaman M, Borhannuddin Bhuyan MHM, Nahar K, Mohsin SM, Fujita M 2019. Comparative Physiological and Biochemical Changes in Tomato (Solanum lycopersicum L.) under Salt Stress and Recovery: Role of Antioxidant Defense and Glyoxalase Systems. Antioxidants, 8(350): 1-16.
  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM 2006. Glutathione Reductase from Pea Leaves: Response to Abiotic Stress and Characterization Of The Peroxisomal Isozyme. New Phytologist, 170(1):43-52.
  • Saı Kachout S, Jaffel Hamza K, Karray Bouraouı N, Leclerc JC&Ouerghı Z (2013). Salt-Induced Changes in Antioxidative Enzyme Activities in Shoot Tissues of Two Atriplex Varieties. Not Bot Horti Agrobo, 41(1): 115-121.
  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S 2011. The Effect of Salt Stress on Growth, Chlorophyll Content, Lipid Peroxidation and Antioxidative Enzymes of Pumpkin Seedling. Afr J Agric Res, 6(21): 4920-4924.
  • Shobbar MS, Azhari O, Shobbar ZS, Niknam V, Askari H, Pessarakli M 2012. Comparative Analysis of Some Physiological Responses of Rice Seedlings to Cold, Salt, and Drought Stresses. J Plant Nutr., 35(7): 1037–1052.
  • Stimart D, Boyle T 2007. Zinnia. (In: Anderson N.O. (eds) Flower Breeding and Genetics. Springer, Dordrecht) Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernandez Ocana A, Del Río, LA, Barroso JB 2006. The Dehydrogenase-Mediated Recycling of NADPH is A Key Antioxidant System Against Salt-Induced Oxidative Stress in Olive Plants. Plant Cell Environ., 29: 1449–1459.
  • Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A and Li Y, 2019. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Front. Plant Sci., 10:1336.
  • Yaşar F, Ellialtioğlu Ş, 2013. Antioxidative Responses of Some Eggplant Genotypes to Salinity Stress. YYÜ Tarım Bilimleri Dergisi, 23(3): 215-221.
  • Yasemin S, Köksal N, Özkaya A, Yener M, 2017. Growth and Physiological Responses of ‘Chrysanthemum paludosum’ under Salinity Stress. J. Biol. Environ. Sci., 11(32): 59-66.
  • Yasemin S, 2020. The Changes on Morphological Anatomic, Physiological and Biochemical Features of Zinnia (Zinnia Sp.) Species under Salt Stress. Cukurova University, PhD Thesis, 248p.
  • Yasemin S, Güzel Değer A, Köksal N, 2020. The effects of Salt Stress in Zinnia (Zinnia Sp.) Cultivars during Seed Germination and at the Early Stages of Seedling Growth. Turkish Journal of Agricultural Research, 7(3): 253-265.
  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, 2017. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Front. Plant Sci., 8:953.

İki Zinnia Türünün Yapraklarında Tuzluluğun Antioksidan Enzim Aktiviteleri, Lipid Peroksidasyonu ve H2O2 Düzeyleri Üzerine Etkilerinin Karşılaştırılması

Year 2021, Volume: 24 Issue: 1, 31 - 39, 28.02.2021
https://doi.org/10.18016/ksutarimdoga.vi.741890

Abstract

Bu çalışmada, önemli bir çevresel sorun olan tuzluluğun, süs bitkilerinin (zinnia gibi) yetiştirilmesinde ve yüksek tuzlu su ile sulamada, özellikle antioksidan savunma mekanizması üzerindeki etkilerinin araştırılması amaçlanmıştır. Bu amaçla, iki Zinnia türü farklı konsantrasyonlarda tuzlu su (50, 100, 150, 200 mM NaCl) ile sulanmıştır; tuzluluğun yapraklardaki süperoksit dismutaz (SOD), katalaz (CAT), glutatyon redüktaz (GR) lipit peroksidasyonu (MDA) ve hidrojen peroksit (H2O2) üzerindeki etkileri belirlenmiştir. Sonuçlar, tuzluluğun iki Zinnia türünde SOD, CAT, GR, H2O2 ve MDA içeriğini kontrol gruplarına kıyasla belirgin şekilde arttırdığını göstermiştir. SOD ve CAT enzim aktivitelerinin her iki Zinnia türünde 150 mM NaCl ile önemli ölçüde arttığı, ancak 200 mM NaCl ile azaldığı bulunmuştur. En yüksek GR enzim aktivitesi, Zinnia marylandica "Double Zahara Fire Improved" da 200mM tuz konsantrasyonunda gözlenmiştir. MDA ve H2O2 seviyeleri Zinnia elegans 'Zinnita Scarlet' da daha yüksek olarak gözlemlenmiştir. Sonuç olarak, bu iki Zinnia çeşidinin 150 mM'a kadar tuz konsantrasyonunu tolere edebildiği söylenebilir.

Project Number

Project No: FBA-2019-11481.

References

  • Abogadallah GM 2010. Antioxidative Defense under Salt Stress. Plant Signal Behav, 5(4): 369–374.
  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sánchez-Blanco MJ, Hernández JA 2017. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(18):1-38.
  • Aebi H 1974. Catalase. (In: Bergmeyer, H.U. (Eds.) Methods of Enzymatic Analysis, Verlag Chemie/Academic Press Inc., NewYork), 673-680.
  • Ahmad, P 2010. Growth and antioxidant responses in mustard (Brassica napus L.) plants subjected to combined effect of gibberellic acid and salinity. Archieves Agronomy and Soil Science, 56(5): 575-588.
  • Asada K 1999. The Water-Water Cycle in Chloroplasts: Scavenging of Active Oxygens and Dissipation of Excess Photons. Annu Rev PlantBio, 50(1):601–639.
  • Ashraf M 2009. Biotechnological Approach of Improving Plant Salt Tolerance Using Antioxidants as Markers. Biotechnology Advances, 27(1): 84-93.
  • Basu S, Aryadeep R, Progya PS, Dibyendu NS 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Journal of Plant Growth Regulation, 60(1): 51–59.
  • Beyer WF, Fridowich I, 1987. Assaying for Superokside Dismutase Activity: Some Large Consequences of Minor Changes in Conditions, 161(2): 559-566.
  • Bor M, Özdemir F, Türkan I 2003. The Effect of Salt Stress on Lipid Peroxidation and Antioxidants in Leaves Of Sugar Beet Beta vulgaris L. and Wild Beet Beta maritime L. Plant Science, 164(1): 77-84.
  • Bowler C, Van Montagu M, Inze D 1992. Superoxide Dismutase and Stress Tolerance. Annu. Rev Plant Physiol Plant Mol Biol., 43: 83–116.
  • Bradford MM 1976. A Rapid and Sensitice Method for the Quantification of Microgram Quantities of Protein, Utilizing the Principle of Protein-Dye Binding. Anal.Biochem., 72: 248-254.
  • Carlberg I, Mannervik B 1985. Glutathione Reductase. Method in Enzymology, 113: 484-490.
  • Cassaniti C., Leonardi C., and Flowers T.J., 2009. The effects of sodium chloride on ornamental shrubs. Scientia Horticulturae, 122(4): 586–593.
  • Cassaniti C, Romano D, Flowers TJ, 2012. The Response of Ornamental Plants to Saline Irrigation Water, (Irrigation-Water Management, Pollution and Alternative Strategies. Dr Iker Garcia-Garizabal (Ed.), ISBN: 978-953-51-0421-6, InTech).
  • Cassaniti C, Romano D, Hop MECM, Flowers TJ 2013. Growing Floricultural Crops with Brackish Water. Environ. Exp. Bot., 92: 165–175.
  • Çekiç ÖF, Ünyayar S 2006. Interactıve Effects of NaCl and CdCl2 on Antioxidant Enzyme Activities and Some Biochemical Compounds in Two Tomato Genotypes. Fresenius Environmental Bulletin, 15(7): 633-639.
  • Çevik S, Unyayar S 2015. The effects of exogenous application of ascorbate and glutathione on antioxidant system in cultivated Cicer arietinum and wild type C. reticulatum under drought stress. Suleyman Demirel University, J Nat Appl Sci., 19(1):91–97
  • Choudhury S, Panda P, Sahoo L, Panda SK 2013. Reactive Oxygen Species Signaling in Plants under Abiotic Stress. Plant Signal.Behav. 8, e23681.
  • García-Caparrós P, Lao M. Teresa 2018. The effects of salt stress on ornamental plants and integrative cultivation practices. Scientia horticulturae, 240: 430-439.
  • Gill SS, Tajrishi M, Madan M 2013. A DESD-Box Helicase Functions in Salinity Stress Tolerance by Improving Photosynthesis and Antioxidant Machinery in Rice (Oryza sativa L. cv. PB1). Plant Mol Biol., 82(1-2): 1–22.
  • Gong HJ, Zhu XY, Chen KM, Wang SM, Zhang CL 2005. Silicon Alleviates Oxidative Damage of Wheat Plants in Pots under Drought. Plant Sci., 169(2): 313–321.
  • Gupta B, Huang B 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International journal of genomics, 2014:1-18.
  • Hasanuzzaman M, Hossain MA, Teixeira da Silva J, Fujita M 2012. Plant Response and Tolerance to Abiotic Oxidative Stress: Antioxidant Defense Is a Key Factor. In: Venkateswarlu B., Shanker A., Shanker C., Maheswari M. (eds) Crop Stress and its Management:Perspectives and Strategies. Springer,Dordrecht.pp261-315. https://doi.org/10.1007/978-94-007-2220-0_8
  • Hernandez JA, Mullineaux P, Sevilla F 2000. Tolerance of Pea (Pisum sativum L.) to Long Term Stress is Associated with Induction of Antioxidant Defences. Plant, Cell & Environment, 23: 853-862.
  • Isayenkov SV, Maathuis F 2019. Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10:80.
  • Khan MH, Panda SK 2008. Alterations in Root Lipid Peroxidation and Antioxidative Responses in Two Rice Cultivars under NaCl-Salinity Stress. Acta Physiologiae Plantarum, 30: 81-89
  • Koksal N, Alkan A, Kulahlioglu I, Ertargin E, Karalar E 2016. Ion Uptake of Marigold under Saline Growth Conditions. SpringerPlus 5(139): 1-12.
  • Kusvuran S, Ellialtioglu S, Yasar F, Abak K 2007. Effects of salt stress on ion accumulations and some of the antioxidant enzymes activities in melon (Cucumis melo L.), Inter. J. Food Agric. Environ., 2(5): 351-354.
  • Läuchli A, Grattan S 2007. Plant Growth And Development Under Salinity Stress. In: Jenks M.A., Hasegawa P.M., Jain S.M. (eds) Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops. Springer, Dordrecht Laxa M, Liebthal M, Telman W, Chibani K, Dietz KJ 2019. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants (Basel, Swi), 8(4):94.
  • Li Y 2009. Physiological responses of tomato seedlings (Lycopersicon esculentum) to salt stress. Modern Appl. Sci., 3(3): 171-176.
  • Liang W, Ma X, Wan P, Liu L 2018. Plant salt-tolerance: mechanism: A review. Biochemical and Biophysical Research Communications, 495(1): 286-291.
  • Liu, Soundararajan, P, Manivannan A 2019. Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. Plants, 8 (9): 307.
  • Loreto F, Velikova V 2001. Isoprene Produced by Leaves Protects the Photosynthetic Apparatus against Ozone Damage, Quenches Ozone Products, and Reduces Lipid Peroxidation of Cellular Membranes. Plant Physiol., 127(4): 1781-1787.
  • Manivannan A, Soundararajan P, Arum, LS 2015. Silicon-Mediated Enhancement of Physiological and Biochemical Characteristics of Zinnia elegans ‘Dreamland Yellow’ Grown under Salinity Stress. Hortic. Environ. Biotechnol., 56(6): 721–731.
  • Mittler R 2002. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant Sci., 7(9): 405-410.
  • Mittova V, Tal M, Volokita M and Guy M 2002. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum, 115(3): 393-400.
  • Møller IM, Jensen PE, Hansson A 2007. Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol., 58: 459–481.
  • Moradi F, Ismail AM 2007. Responses of Photosynthesis, Chlorophyll Fluorescence and ROS-Scavenging Systems to Salt Stress During Seedling and Reproductive Stages in Rice. Ann Bot., 99: 1161–1179.
  • Munns R 2005. Genes and salt tolerance: bringing them together. New Phytologist, 167: 645-663.
  • Neto ADA, Prisco JT, Eneas Filho J, Abreu CEB, Gomes Filho E 2006. Effect of Salt Stress on Antioxidatif Enzymes and Lipid Peroxidation in Leaves and Roots of Salt-Tolerant and Salt-Sensitive Maize Genotypes. Environmental and Experimental Botany, 56: 87- 94.
  • Ohkawa H, Ohishi N, Yagi K 1979. Assay for Lipid Peroxides in Animal Tissues by Thiobarbituric Acid Reaction. Analytical Biochemistry, 95: 351- 358.
  • Omari REL, Nhiri M 2015. Adaptive Response to Salt Stress in Sorghum (Sorghum bicolor). Am-Euras. J Agric and Environ Sci., 15(7): 1351-1360.
  • Özkoku G, Çevik S, Ünyayar S 2019. Dışsal Sentetik Inositol Türevi (Allo-İnositol) Uygulamasının Capsicum chinense Bitkisinin Tuz (Nacl) Toleransı Üzerine Etkisi. Anadolu Tarım Bilim. Derg./Anadolu J Agr Sci., 34: 319-326.
  • Panda SK and Khan MH 2004. Changes in growth and superoxide dismutase activity in Hydrilla verticillata L.under abiotic stress. Braz. J. Plant. Physiol., 16: 115-118.
  • Pandey S, Patel MK, Mishra A, Jha B 2015. Physio-Biochemical Composition and Untargeted Metabolomics of Cumin (Cuminum cyminum L.) Make It Promising Functional Food and Help in Mitigating Salinity Stress. PLoS ONE, 10(12): e0144469.
  • Pang CH, Wang BS 2008. Oxidative Stress and Salt Tolerance in Plants (U. Lüttge et al. (eds.), Progress in Botany 69. 231 © Springer-Verlag Berlin Heidelberg).
  • Parvin K, Hasanuzzaman M, Borhannuddin Bhuyan MHM, Nahar K, Mohsin SM, Fujita M 2019. Comparative Physiological and Biochemical Changes in Tomato (Solanum lycopersicum L.) under Salt Stress and Recovery: Role of Antioxidant Defense and Glyoxalase Systems. Antioxidants, 8(350): 1-16.
  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM 2006. Glutathione Reductase from Pea Leaves: Response to Abiotic Stress and Characterization Of The Peroxisomal Isozyme. New Phytologist, 170(1):43-52.
  • Saı Kachout S, Jaffel Hamza K, Karray Bouraouı N, Leclerc JC&Ouerghı Z (2013). Salt-Induced Changes in Antioxidative Enzyme Activities in Shoot Tissues of Two Atriplex Varieties. Not Bot Horti Agrobo, 41(1): 115-121.
  • Sevengor S, Yasar F, Kusvuran S, Ellialtioglu S 2011. The Effect of Salt Stress on Growth, Chlorophyll Content, Lipid Peroxidation and Antioxidative Enzymes of Pumpkin Seedling. Afr J Agric Res, 6(21): 4920-4924.
  • Shobbar MS, Azhari O, Shobbar ZS, Niknam V, Askari H, Pessarakli M 2012. Comparative Analysis of Some Physiological Responses of Rice Seedlings to Cold, Salt, and Drought Stresses. J Plant Nutr., 35(7): 1037–1052.
  • Stimart D, Boyle T 2007. Zinnia. (In: Anderson N.O. (eds) Flower Breeding and Genetics. Springer, Dordrecht) Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernandez Ocana A, Del Río, LA, Barroso JB 2006. The Dehydrogenase-Mediated Recycling of NADPH is A Key Antioxidant System Against Salt-Induced Oxidative Stress in Olive Plants. Plant Cell Environ., 29: 1449–1459.
  • Waqas MA, Kaya C, Riaz A, Farooq M, Nawaz I, Wilkes A and Li Y, 2019. Potential Mechanisms of Abiotic Stress Tolerance in Crop Plants Induced by Thiourea. Front. Plant Sci., 10:1336.
  • Yaşar F, Ellialtioğlu Ş, 2013. Antioxidative Responses of Some Eggplant Genotypes to Salinity Stress. YYÜ Tarım Bilimleri Dergisi, 23(3): 215-221.
  • Yasemin S, Köksal N, Özkaya A, Yener M, 2017. Growth and Physiological Responses of ‘Chrysanthemum paludosum’ under Salinity Stress. J. Biol. Environ. Sci., 11(32): 59-66.
  • Yasemin S, 2020. The Changes on Morphological Anatomic, Physiological and Biochemical Features of Zinnia (Zinnia Sp.) Species under Salt Stress. Cukurova University, PhD Thesis, 248p.
  • Yasemin S, Güzel Değer A, Köksal N, 2020. The effects of Salt Stress in Zinnia (Zinnia Sp.) Cultivars during Seed Germination and at the Early Stages of Seedling Growth. Turkish Journal of Agricultural Research, 7(3): 253-265.
  • Zandalinas SI, Balfagón D, Arbona V, Gómez-Cadenas A, 2017. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus. Front. Plant Sci., 8:953.
There are 58 citations in total.

Details

Primary Language English
Subjects Structural Biology, Agricultural, Veterinary and Food Sciences
Journal Section RESEARCH ARTICLE
Authors

Sara Yasemin 0000-0003-2193-6791

Ayşin Güzel Değer 0000-0001-6336-1872

Sertan Çevik 0000-0003-1259-7863

Nezihe Köksal 0000-0002-5401-9730

Project Number Project No: FBA-2019-11481.
Publication Date February 28, 2021
Submission Date May 26, 2020
Acceptance Date July 9, 2020
Published in Issue Year 2021Volume: 24 Issue: 1

Cite

APA Yasemin, S., Güzel Değer, A., Çevik, S., Köksal, N. (2021). Benchmarking of the Effects of Salinity on Antioxidant Enzymes Activities, Lipid Peroxidation and H2O2 Levels in the Leaves of Two Zinnia Species. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 24(1), 31-39. https://doi.org/10.18016/ksutarimdoga.vi.741890


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149