Araştırma Makalesi
BibTex RIS Kaynak Göster

H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ

Yıl 2018, Cilt: 23 Sayı: 2, 167 - 182, 31.08.2018
https://doi.org/10.17482/uumfd.358520

Öz

Bu çalışmada kompleksleştirme yöntemiyle eşmolar
oranda Ti-V-Fe ve Ti-V-Cr katalizörleri sentezlenmiş ve H2S’ün
seçici oksidasyon reaksiyonuyla elementel kükürt eldesindeki aktiviteleri
incelenmiştir. Katalizörlerin katalitik aktiviteleri dolgulu kolon reaktör
sisteminde farklı sıcaklık (200°C, 250°C, 300°C) ve stokiyometrik gaz (O2/H2S:0,5)
bileşiminde incelenmiştir. Katalizörlerin yapısal özellikleri N2
adsorpsiyon-desorpsiyon, XRD, TPR, SEM-EDS analizleri ile belirlenmiştir.
Sentezlenen katalizörlerin mezogözenekli yapıya sahip olduğu tespit edilmiştir.
Ti-V-Cr katalizörünün kristal yapısı TiO2’in rutile fazı ve Cr2O3
bileşiklerinden oluşurken, Ti-V-Fe katalizörü kompleks bir kristal yapı
sergilemiştir. Bu katalizörün yapısında Fe2TiO5, V2O5,
FeV2O4, rutile TiO2 ve Fe2O3
bileşikleri görülmüştür. Sentezlenen her iki katalizörle de 250°C reaksiyon
sıcaklığında % 100 H2S dönüşümü elde edilmiştir. Reaksiyon
sıcaklığındaki artış ve azalış katalizörlerde elde edilen H2S
dönüşümünde azalmaya sebep olmuştur. Bunun yanı sıra çalışılan tüm şartlarda
her iki katalizörle de oldukça yüksek (≥% 97) elementel kükürt seçiciliği elde
edilmiştir.  Özellikle 200°C sıcaklıkta,
yapısında kompleks bileşikleri içeren Ti-V-Fe katalizörü ile (% 73 H2S
dönüşümü) Ti-V-Cr katalizörüne kıyasla (% 51 H2S dönüşümü) daha
yüksek dönüşüm elde edilmiştir. 

Kaynakça

  • Brundle, C.R., Evans, C.A. (1992) Materials characterization series, In: I.E. Wachs (ed.), Characterization of catalytic materials, Boston.
  • Caceres, C.V., Fierro, J.L., Agudo, A.L., Soria, J. (1990) Effect of support on the surface characteristics of supported molybdena catalysts, Journal of Catalysis, 122,113-125. https://doi.org/10.1016/0021-9517(90)90265-L
  • Chun, S.W., Jang, J.Y., Park, D.W., Woob, H.C., Chung, J.S. (1998) Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts. Applied Catalysis B: Environmental, 16, 235–243. https://doi.org/10.1016/S0926-3373(97)00078-7
  • Eslek, D.D., Yasyerli, S. (2009) Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H2S to sulfur, Industrıal & Engineering Chemistry Research, 48, 5223–5229. DOI: 10.1021/ie8017059
  • Ilieva, L.I., Andreeva, D.H. (1995) Investigation of the chromium oxide system by means of temperature-programmed reduction, Thermochim Acta, 265,223-31. https://doi.org/10.1016/0040-6031(95)98772-Q
  • Jiang, F., Wei, X., Niu, L., Xiao, G. (2013) Vanadium-chromium oxide: Effective catalysts for ammoxidation of 3-picoline, Advanced Materials Research, 634-638, 624-627. DOI: 10.4028/www.scientific.net/AMR.634-638.624
  • Jung, S.J., Kim, M.H., Chung, J.K., Moon, M.J., Chung, J.S., Park, D.W., Woo, H.C. (2003) Catalytic oxidation of H2S to elemental sulfur over mesoporous Nb/Fe mixed oxides, Studies in Surface Science and Catalysis, 146, 621–624. https://doi.org/10.1016/S0167-2991(03)80460-3
  • Keller, N., Huu, C.P., Ledoux, M.J. (2001) Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint, Applied Catalysis A: General, 217, 205–217. https://doi.org/10.1016/S0926-860X(01)00601-9
  • Kim, M., Ju, W.D., Kim, K.H., Park, D.W., Hong, S.S. (2006) Selective oxidation of hydrogen sulfide to elemental surfur and ammonium thiosulfate using VOx/TiO2 catalysts, Studies in Surface Science and Catalysis, 159, 225-228. DOI:10.1016/S0167-2991(06)81574-0
  • Kirk-Otmer. (1992) Encyclopedia of Chemical Technology, 4.Basım, New York.
  • Kohl, A.L., Nielsen, R.B. (1997) Gas Purification, 5.Basım, Texas.
  • Li, K.T., Wu, K.S. (2001) Selective oxidation of hydrogen sulfide to Sulfur on vanadium-based catalysts containing tin and antimony, Industrial Engineering Chemistry Research, 40, 1052-1057. DOI: 10.1021/ie0007015
  • Li, K.T., Huang, C.H. (2006) Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: Promotional effect of antimony oxide addition, Industrial Engineering Chemistry Research, 45, 7096-7100. DOI: 10.1021/ie060384n
  • Li, K.T., Huang, C.H. (2011) Hydrogen sulfide oxidation on RE (RE = Sm, Y, La)–V–Sb catalysts: Effects of RE size and electronegativity, Catalysis Today, 174, 25–30. doi:10.1016/j.cattod.2011.03.070
  • Li, K.T., Yen, C.S., Shyu, N.S. (1997) Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur, Applied Catalysis A: General, 156, 117–130. https://doi.org/10.1016/S0926-860X(96)00417-6
  • Liao, S.J., Chen, T., Miao, C.X., Yang, W.M., Xie, Z.K., Chen, Q.L. (2008) Effect of TiO2 on the structure and catalytic behavior of iron-potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene, Catalysis Communication, 9, 1817-1821. https://doi.org/10.1016/j.catcom.2008.02.009
  • Lowell, S., Shield,J. (1984) Powder surface area and porosity, 2. Basım, New York.
  • Marcilly, C., Courty, P., Delmon, B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous precursors, Journal of the American Ceramic Society, 53, 56-57. DOI: 10.1111/j.1151-2916.1970.tb12003.x
  • Nagaraju, P., Lingaiah, N., Balaraju, M., Sai Prasad, P.S. (2008) Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine, Applied Catalysis A: General, 339, 99–107. https://doi.org/10.1016/j.apcata.2007.09.032
  • Palma, V., Barba, D. (2014) Low temperature catalytic oxidation of H2S over V2O5/ CeO2 catalysts, Int. J. of Hydrogen Energy, 39, 21524-21530. https://doi.org/10.1016/j.ijhydene.2014.09.120
  • Park , D.W., Park , B.K., Park, D.K, Woo, H.C. (2002) Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia. Applied Catalysis A: General, 223, 215–224. https://doi.org/10.1016/S0926-860X(01)00760-8
  • Shin, M.Y., Park, D.W., Chung, J.S. (2000) Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catalysis Today, 63, 405–411. https://doi.org/10.1016/S0920-5861(00)00485-5
  • Sing, K.S.W, Haul, R.A.W, Pierotti, R.A., Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, 603–619. DOI: https://doi.org/10.1515/iupac.57.0007
  • Smith, D.K., Mrose, M.E., Berry, L.G., Bayliss, P. (1974) Selected Powder Diffraction Data for Minerals, 1.Basım, Pennsylvania.
  • Tasdemir, H.M., Yasyerli, S., Yasyerli, N. (2015) Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts, Int. J. of Hydrogen Energy, 40, 9989-10001. http://dx.doi.org/10.1016/j.ijhydene.2015.06.056
  • Taşdemir, H.M., Yağızatlı, Y., Yaşyerli, S., Yaşyerli, N., Doğu, G. (2017) Ce-O catalysts for elemental sulfur production via selective oxidation of H2S, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 831-841. DOI: 10.17341/gazimmfd.337632
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2003) Breakthrough analysis of H2S removal on Cu-V-Mo, Cu-V and Cu-Mo mixed oxides, Chemical Engineering Communication, 190, 1055-1072, DOI: 10.1080/00986440390207602
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2004) Dynamic analysis of removal and selective oxidation of H2S to elemental sulfur over Cu–V and Cu–V–Mo mixed oxides in a fixed bed reactor, Chemical Engineering Science, 59, 4001 – 4009. DOI: 10.1016/j.ces.2004.03.045
  • Yasyerli, S., Dogu, G., Dogu, T. (2006) Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation technique. Catalysis Today, 117, 271–278. https://doi.org/10.1016/j.cattod.2006.05.030
  • Zhang, X., Tang, Y., Qu, S., Da, J., Hao, Z. (2014) H2S-selectşve catalytic oxidation: Catalysts and processes, ACS Catalysis, 5, 1053-1067. DOI: 10.1021/cs501476p
  • Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J. (2004) Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225, 267-277. https://doi.org/10.1016/j.jcat.2004.04.006

Ti-V-Cr and Ti-V-Fe Catalysts for H2S Selective Oxidation to Elemental Sulfur

Yıl 2018, Cilt: 23 Sayı: 2, 167 - 182, 31.08.2018
https://doi.org/10.17482/uumfd.358520

Öz

In this study, Ti-V-Fe and Ti-V-Cr catalysts
were synthesized by complexation method and their activities were investigated
for H2S selective oxidation reaction to elemental sulfur. Structural
properties of the catalysts were determined by N2
adsorption-desorption, XRD, TPR, SEM-EDS analyzes. According to the analysis
results, it has been found that the synthesized catalysts have a mesoporous
structure. Ti-V-Fe catalyst exhibits a complex crystal structure, while the
crystal structure of the Ti-V-Cr catalyst is comprised of the rutile phase of
TiO2 and Cr2O3 compounds. In this catalyst
structure, Fe2TiO5, V2O5, FeV2O4,
rutile TiO2 and Fe2O3 compounds were observed.
The catalytic activities of the catalysts were investigated in a packed column
reactor system at different temperatures (200°C, 250°C, 300°C) and
stoichiometric gas composition (O2/H2S:0.5). 100% H2S
conversion was obtained at 250°C reaction temperature with both catalysts
synthesized. The increase and decrease in the reaction temperature led to a
decrease in the conversion of H2S obtained with the catalysts due to
the increase in sulfur deposition in the catalyst structure. In addition, under
all conditions studied, elemental sulfur selectivity was high (≥ 97%) with both
catalysts. Espe,cially at 200°C, a higher conversion was obtained with Ti-V-Fe (73%
H2S conversion) catalyst which has complex compounds in the
structure compared to Ti-V-Cr catalyst (51% H2S conversion).

Kaynakça

  • Brundle, C.R., Evans, C.A. (1992) Materials characterization series, In: I.E. Wachs (ed.), Characterization of catalytic materials, Boston.
  • Caceres, C.V., Fierro, J.L., Agudo, A.L., Soria, J. (1990) Effect of support on the surface characteristics of supported molybdena catalysts, Journal of Catalysis, 122,113-125. https://doi.org/10.1016/0021-9517(90)90265-L
  • Chun, S.W., Jang, J.Y., Park, D.W., Woob, H.C., Chung, J.S. (1998) Selective oxidation of H2S to elemental sulfur over TiO2/SiO2 catalysts. Applied Catalysis B: Environmental, 16, 235–243. https://doi.org/10.1016/S0926-3373(97)00078-7
  • Eslek, D.D., Yasyerli, S. (2009) Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of H2S to sulfur, Industrıal & Engineering Chemistry Research, 48, 5223–5229. DOI: 10.1021/ie8017059
  • Ilieva, L.I., Andreeva, D.H. (1995) Investigation of the chromium oxide system by means of temperature-programmed reduction, Thermochim Acta, 265,223-31. https://doi.org/10.1016/0040-6031(95)98772-Q
  • Jiang, F., Wei, X., Niu, L., Xiao, G. (2013) Vanadium-chromium oxide: Effective catalysts for ammoxidation of 3-picoline, Advanced Materials Research, 634-638, 624-627. DOI: 10.4028/www.scientific.net/AMR.634-638.624
  • Jung, S.J., Kim, M.H., Chung, J.K., Moon, M.J., Chung, J.S., Park, D.W., Woo, H.C. (2003) Catalytic oxidation of H2S to elemental sulfur over mesoporous Nb/Fe mixed oxides, Studies in Surface Science and Catalysis, 146, 621–624. https://doi.org/10.1016/S0167-2991(03)80460-3
  • Keller, N., Huu, C.P., Ledoux, M.J. (2001) Continuous process for selective oxidation of H2S over SiC-supported iron catalysts into elemental sulfur above its dewpoint, Applied Catalysis A: General, 217, 205–217. https://doi.org/10.1016/S0926-860X(01)00601-9
  • Kim, M., Ju, W.D., Kim, K.H., Park, D.W., Hong, S.S. (2006) Selective oxidation of hydrogen sulfide to elemental surfur and ammonium thiosulfate using VOx/TiO2 catalysts, Studies in Surface Science and Catalysis, 159, 225-228. DOI:10.1016/S0167-2991(06)81574-0
  • Kirk-Otmer. (1992) Encyclopedia of Chemical Technology, 4.Basım, New York.
  • Kohl, A.L., Nielsen, R.B. (1997) Gas Purification, 5.Basım, Texas.
  • Li, K.T., Wu, K.S. (2001) Selective oxidation of hydrogen sulfide to Sulfur on vanadium-based catalysts containing tin and antimony, Industrial Engineering Chemistry Research, 40, 1052-1057. DOI: 10.1021/ie0007015
  • Li, K.T., Huang, C.H. (2006) Selective oxidation of hydrogen sulfide to sulfur over LaVO4 catalyst: Promotional effect of antimony oxide addition, Industrial Engineering Chemistry Research, 45, 7096-7100. DOI: 10.1021/ie060384n
  • Li, K.T., Huang, C.H. (2011) Hydrogen sulfide oxidation on RE (RE = Sm, Y, La)–V–Sb catalysts: Effects of RE size and electronegativity, Catalysis Today, 174, 25–30. doi:10.1016/j.cattod.2011.03.070
  • Li, K.T., Yen, C.S., Shyu, N.S. (1997) Mixed-metal oxide catalysts containing iron for selective oxidation of hydrogen sulfide to sulfur, Applied Catalysis A: General, 156, 117–130. https://doi.org/10.1016/S0926-860X(96)00417-6
  • Liao, S.J., Chen, T., Miao, C.X., Yang, W.M., Xie, Z.K., Chen, Q.L. (2008) Effect of TiO2 on the structure and catalytic behavior of iron-potassium oxide catalyst for dehydrogenation of ethylbenzene to styrene, Catalysis Communication, 9, 1817-1821. https://doi.org/10.1016/j.catcom.2008.02.009
  • Lowell, S., Shield,J. (1984) Powder surface area and porosity, 2. Basım, New York.
  • Marcilly, C., Courty, P., Delmon, B. (1970). Preparation of highly dispersed mixed oxides and oxide solid solutions by pyrolysis of amorphous precursors, Journal of the American Ceramic Society, 53, 56-57. DOI: 10.1111/j.1151-2916.1970.tb12003.x
  • Nagaraju, P., Lingaiah, N., Balaraju, M., Sai Prasad, P.S. (2008) Studies on vanadium-doped iron phosphate catalysts for the ammoxidation of methylpyrazine, Applied Catalysis A: General, 339, 99–107. https://doi.org/10.1016/j.apcata.2007.09.032
  • Palma, V., Barba, D. (2014) Low temperature catalytic oxidation of H2S over V2O5/ CeO2 catalysts, Int. J. of Hydrogen Energy, 39, 21524-21530. https://doi.org/10.1016/j.ijhydene.2014.09.120
  • Park , D.W., Park , B.K., Park, D.K, Woo, H.C. (2002) Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia. Applied Catalysis A: General, 223, 215–224. https://doi.org/10.1016/S0926-860X(01)00760-8
  • Shin, M.Y., Park, D.W., Chung, J.S. (2000) Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catalysis Today, 63, 405–411. https://doi.org/10.1016/S0920-5861(00)00485-5
  • Sing, K.S.W, Haul, R.A.W, Pierotti, R.A., Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure and Applied Chemistry, 57, 603–619. DOI: https://doi.org/10.1515/iupac.57.0007
  • Smith, D.K., Mrose, M.E., Berry, L.G., Bayliss, P. (1974) Selected Powder Diffraction Data for Minerals, 1.Basım, Pennsylvania.
  • Tasdemir, H.M., Yasyerli, S., Yasyerli, N. (2015) Selective catalytic oxidation of H2S to elemental sulfur over titanium based Ti-Fe, Ti-Cr and Ti-Zr catalysts, Int. J. of Hydrogen Energy, 40, 9989-10001. http://dx.doi.org/10.1016/j.ijhydene.2015.06.056
  • Taşdemir, H.M., Yağızatlı, Y., Yaşyerli, S., Yaşyerli, N., Doğu, G. (2017) Ce-O catalysts for elemental sulfur production via selective oxidation of H2S, Journal of the Faculty of Engineering and Architecture of Gazi University, 32(3), 831-841. DOI: 10.17341/gazimmfd.337632
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2003) Breakthrough analysis of H2S removal on Cu-V-Mo, Cu-V and Cu-Mo mixed oxides, Chemical Engineering Communication, 190, 1055-1072, DOI: 10.1080/00986440390207602
  • Yasyerli, S., Dogu, G., Ar, İ., Dogu, T. (2004) Dynamic analysis of removal and selective oxidation of H2S to elemental sulfur over Cu–V and Cu–V–Mo mixed oxides in a fixed bed reactor, Chemical Engineering Science, 59, 4001 – 4009. DOI: 10.1016/j.ces.2004.03.045
  • Yasyerli, S., Dogu, G., Dogu, T. (2006) Selective oxidation of H2S to elemental sulfur over Ce–V mixed oxide and CeO2 catalysts prepared by the complexation technique. Catalysis Today, 117, 271–278. https://doi.org/10.1016/j.cattod.2006.05.030
  • Zhang, X., Tang, Y., Qu, S., Da, J., Hao, Z. (2014) H2S-selectşve catalytic oxidation: Catalysts and processes, ACS Catalysis, 5, 1053-1067. DOI: 10.1021/cs501476p
  • Zhu, H., Qin, Z., Shan, W., Shen, W., Wang, J. (2004) Pd/CeO2-TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents, Journal of Catalysis, 225, 267-277. https://doi.org/10.1016/j.jcat.2004.04.006
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

H. Mehmet Taşdemir 0000-0001-9569-4161

Yayımlanma Tarihi 31 Ağustos 2018
Gönderilme Tarihi 28 Kasım 2017
Kabul Tarihi 25 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 23 Sayı: 2

Kaynak Göster

APA Taşdemir, H. M. (2018). H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 23(2), 167-182. https://doi.org/10.17482/uumfd.358520
AMA Taşdemir HM. H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ. UUJFE. Ağustos 2018;23(2):167-182. doi:10.17482/uumfd.358520
Chicago Taşdemir, H. Mehmet. “H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr Ve Ti-V-Fe KATALİZÖRLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23, sy. 2 (Ağustos 2018): 167-82. https://doi.org/10.17482/uumfd.358520.
EndNote Taşdemir HM (01 Ağustos 2018) H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23 2 167–182.
IEEE H. M. Taşdemir, “H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ”, UUJFE, c. 23, sy. 2, ss. 167–182, 2018, doi: 10.17482/uumfd.358520.
ISNAD Taşdemir, H. Mehmet. “H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr Ve Ti-V-Fe KATALİZÖRLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 23/2 (Ağustos 2018), 167-182. https://doi.org/10.17482/uumfd.358520.
JAMA Taşdemir HM. H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ. UUJFE. 2018;23:167–182.
MLA Taşdemir, H. Mehmet. “H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr Ve Ti-V-Fe KATALİZÖRLERİ”. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, c. 23, sy. 2, 2018, ss. 167-82, doi:10.17482/uumfd.358520.
Vancouver Taşdemir HM. H2S’ÜN ELEMENTEL KÜKÜRDE SEÇİCİ OKSİDASYONUNDA Ti-V-Cr ve Ti-V-Fe KATALİZÖRLERİ. UUJFE. 2018;23(2):167-82.

DUYURU:

30.03.2021- Nisan 2021 (26/1) sayımızdan itibaren TR-Dizin yeni kuralları gereği, dergimizde basılacak makalelerde, ilk gönderim aşamasında Telif Hakkı Formu yanısıra, Çıkar Çatışması Bildirim Formu ve Yazar Katkısı Bildirim Formu da tüm yazarlarca imzalanarak gönderilmelidir. Yayınlanacak makalelerde de makale metni içinde "Çıkar Çatışması" ve "Yazar Katkısı" bölümleri yer alacaktır. İlk gönderim aşamasında doldurulması gereken yeni formlara "Yazım Kuralları" ve "Makale Gönderim Süreci" sayfalarımızdan ulaşılabilir. (Değerlendirme süreci bu tarihten önce tamamlanıp basımı bekleyen makalelerin yanısıra değerlendirme süreci devam eden makaleler için, yazarlar tarafından ilgili formlar doldurularak sisteme yüklenmelidir).  Makale şablonları da, bu değişiklik doğrultusunda güncellenmiştir. Tüm yazarlarımıza önemle duyurulur.

Bursa Uludağ Üniversitesi, Mühendislik Fakültesi Dekanlığı, Görükle Kampüsü, Nilüfer, 16059 Bursa. Tel: (224) 294 1907, Faks: (224) 294 1903, e-posta: mmfd@uludag.edu.tr