Plant Soil Environ., 2022, 68(6):272-289 | DOI: 10.17221/522/2021-PSE

Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soilOriginal Paper

Zenghui Sun*,1,2,3, Ya Hu1,3, Lei Shi1,3, Gang Li1,3, Zhe Pang1,3, Siqi Liu1,3, Yamiao Chen1,3, Baobao Jia4
1 Shaanxi Provincial Land Engineering Construction Group Co., Xi'an, P.R. China
2 Collegeof Life Sciences, Yulin University, Yulin, P.R. China
3 Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural and Resources of China, Xi'an, P.R. China
4 Shaanxi Tourism Group Co., Ltd, Xi'an, P.R. China

Improved soil properties are commonly reported benefits of adding biochar to agriculture soils. To investigate the range of biochar's effects on soil chemical properties (e.g., soil pH, electrical conductivity (EC), cation exchange capacity (CEC), soil organic carbon (SOC), soil total carbon (TC), and soil carbon-nitrogen ratio (C:N ratio)) in response to varied experimental conditions, a meta-analysis was conducted on previously published results. The results showed that the effect of biochar on soil chemical properties varied depending on management conditions, soil properties, biochar pyrolysis conditions, and biochar properties. The effect size (Hedges'd) of the biochar was greatest for SOC (0.50), the C:N ratio of soil (0.44), soil pH (0.39), TC (0.35), EC (0.21), and CEC (0.20). Among the various factors examined by aggregated boosted tree analysis, the effects of biochar on soil chemical properties were largely explained by the biochar application rate, initial soil pH, and soil sand content. In conclusion, our study suggests that improving soil chemical properties by adding biochar not only requires consideration of biochar application rates and chemical properties but also the local soil environmental factors, especially soil initial pH and sand content of the soil, should be considered.

Keywords: charcoal; organic material; agricultural condition; soil chemistry; soil fertility

Published: June 15, 2022  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Sun Z, Hu Y, Shi L, Li G, Pang Z, Liu S, et al.. Effects of biochar on soil chemical properties: A global meta-analysis of agricultural soil. Plant Soil Environ.. 2022;68(6):272-289. doi: 10.17221/522/2021-PSE.
Download citation

References

  1. Abujabhah I.S., Bound S.A., Doyle R., Bowman J.P. (2016a): Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Applied Soil Ecology, 98: 243-253. Go to original source...
  2. Abujabhah I.S., Doyle R., Bound S.A., Bowman J.P. (2016b): The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils. Journal of Soils and Sediments, 16: 2211-2222. Go to original source...
  3. Adams C., Soares K. (1997): The Cochrane Collaboration and the Process of Systematic Reviewing. Advances in Psychiatric Treatment, 3: 240-246. Go to original source...
  4. Agegnehu G., Nelson P.N., Bird M.I. (2016): The effects of biochar, compost and their mixture and nitrogen fertilizer on yield and nitrogen use efficiency of barley grown on a Nitisol in the highlands of Ethiopia. Science of The Total Environment, 569-570: 869-879. Go to original source... Go to PubMed...
  5. Agegnehu G., Srivastava A.K., Bird M.I. (2017): The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Applied Soil Ecology, 119: 156-170. Go to original source...
  6. Ahmad M., Rajapaksha A.U., Lim J.E., Ming Z., Bolan N., Mohan D., Vithanage M., Lee S.S., Ok Y.S. (2014): Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 99: 19-33. Go to original source... Go to PubMed...
  7. Ajayi A.E., Horn R. (2016): Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added biochar. Soil and Tillage Research, 164: 34-44. Go to original source...
  8. Alotaibi K.D., Schoenau J.J. (2016): Application of two bioenergy byproducts with contrasting carbon availability to a prairie soil: three year crop response and changes in soil biological and chemical properties. Agronomy, 6: 13. Go to original source...
  9. Arft A.M., Walker M.D., Gurevitch J., Alatalo J.M., Bret-Harte M.S., Dale M., Diemer M., Gugerl F., Henry G.H.R., Jones M.H., Hollister R.D., Jónsdóttir I.S., Laine K., Lévesque E., Marion G.M., Molau U., Molgaard P., Nordenhäll U., Raszhivin V., Robinson C.H., Starr G., Stenström A., Stenström M., Totland O., Turner P.L., Walker L.J., Webber P.J., Welker J.M., Wookey P.A. (1999): Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69: 491-511. Go to original source...
  10. Bayabil H.K., Stoof C.R., Lehmann J.C., Yitaferu B., Steenhuis T.S. (2015): Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: the Anjeni watershed. Geoderma, 243-244: 115-123. Go to original source...
  11. Bera T., Collins H.P., Alva A.K., Purakayastha T.J., Patra A.K. (2016): Biochar and manure effluent effects on soil biochemical properties under corn production. Applied Soil Ecology, 107: 360-367. Go to original source...
  12. Borchard N., Schirrmann M., Cayuela M.L., Kammann C., WrageMönnig N., Estavillo J.M., Fuertes-Mendizábal T., Sigua G., Spokas K., Ippolito J.A., Novak J. (2019): Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Science of The Total Environment, 651: 2354-2364. Go to original source... Go to PubMed...
  13. Borchard N., Siemens J., Ladd B., Möller A., Amelung W. (2014): Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil and Tillage Research, 144: 184-194. Go to original source...
  14. Burrell L.D., Zehetner F., Rampazzo N., Wimmer B., Soja G. (2016): Long-term effects of biochar on soil physical properties. Geoderma, 282: 96-102. Go to original source...
  15. Case S.D.C., McNamara N.P., Reay D.S., Whitaker J. (2012): The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil - the role of soil aeration. Soil Biology and Biochemistry, 51: 125-134. Go to original source...
  16. Cayuela M.L., Aguilera E., Sanz-Cobena A., Adams D.C., Abalos D., Barton L., Ryals R., Silver W.L., Alfaro M.A., Pappa V.A., Smith P., Garnier J., Billen G., Bouwman L., Bondeau A., Lassaletta L. (2017): Direct nitrous oxide emissions in Mediterranean climate cropping systems: emission factors based on a meta-analysis of available measurement data. Agriculture, Ecosystems and Environment, 238: 25-35. Go to original source...
  17. Cayuela M.L., van Zwieten L., Singh B.P., Jeffery S., Roig A., Sánchez-Monedero M.A. (2014): Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems and Environment, 191: 5-16. Go to original source...
  18. Chen D., Liu X.Y., Bian R.J., Cheng K., Zhang X.H., Zheng J.F., Joseph S., Crowley D., Pan G.X., Li L.Q. (2018): Effects of biochar on availability and plant uptake of heavy metals - a meta-analysis. Journal of Environmental Management, 222: 76-85. Go to original source... Go to PubMed...
  19. Cheng J.Z., Lee X.Q., Gao W.C., Chen Y., Pan W., Tang Y. (2017): Effect of biochar on the bioavailability of difenoconazole and microbial community composition in a pesticide-contaminated soil. Applied Soil Ecology, 121: 185-192. Go to original source...
  20. Cleveland C.C., Liptzin D. (2007): C : N : P stoichiometry in soil: is there a "redfield ratio" for the microbial biomass? Biogeochemistry, 85: 235-252. Go to original source...
  21. Corwin D.L., Lesch S.M. (2005): Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46: 11-43. Go to original source...
  22. Dai Y.H., Zheng H., Jiang Z.X., Xing B.S. (2020): Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Science of The Total Environment, 713: 136635. Go to original source... Go to PubMed...
  23. De la Rosa J.M., Paneque M., Miller A.Z., Knicker H. (2014): Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Science of The Total Environment, 499: 175-184. Go to original source... Go to PubMed...
  24. Deal C., Brewer C.E., Brown R.C., Okure M.A.E., Amoding A. (2012): Comparison of kiln-derived and gasifier-derived biochars as soil amendments in the humid tropics. Biomass and Bioenergy, 37: 161-168. Go to original source...
  25. Edeh I.G., Ma¹ek O., Buss W. (2020): A meta-analysis on biochar's effects on soil water properties - new insights and future research challenges. Science of The Total Environment, 714: 136857. Go to original source... Go to PubMed...
  26. El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., Ahmad M., Shaheen S.M., Ok Y.S. (2019): Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337: 536-554. Go to original source...
  27. Ersahin S., Gunal H., Kutlu T., Yetgin B., Coban S. (2006): Estimating specific surface area and cation exchange capacity in soils using fractal dimension of particle-size distribution. Geoderma, 136: 588-597. Go to original source...
  28. Faloye O.T., Alatise M.O., Ajayi A.E., Ewulo B.S. (2019): Effects of biochar and inorganic fertilizer applications on growth, yield and water use efficiency of maize under deficit irrigation. Agricultural Water Management, 217: 165-178. Go to original source...
  29. Farhangi-Abriz S., Torabian S., Qin R., Noulas C., Lu Y., Gao S. (2021): Biochar effects on yield of cereal and legume crops using meta-analysis. Science of the Total Environment, 775: 145869. Go to original source...
  30. Fedrowitz K., Koricheva J., Baker S.C., Lindenmayer D.B., Palik B., Rosenvald R., Beese W., Franklin J.F., Kouki J., Macdonald E., Messier C., Sverdrup-Thygeson A., Gustafsson L. (2014): Can retention forestry help conserve biodiversity? A meta-analysis. Journal of Applied Ecology, 51: 1669-1679. Go to original source... Go to PubMed...
  31. Foereid B., Lehmann J., Major J. (2011): Modeling black carbon degradation and movement in soil. Plant and Soil, 345: 223-236. Go to original source...
  32. Gao S., DeLuca T.H., Cleveland C.C. (2019): Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of The Total Environment, 654: 463-472. Go to original source... Go to PubMed...
  33. Gao Y., Shao G.C., Yang Z., Zhang K., Lu J., Wang Z.Y., Wu S.Q., Xu D. (2021): Influences of soil and biochar properties and amount of biochar and fertilizer on the performance of biochar in improving plant photosynthetic rate: a meta-analysis. European Journal of Agronomy, 130: 126345. Go to original source...
  34. Giagnoni L., Maienza A., Baronti S., Vaccari F.P., Genesio L., Taiti C., Martellini T., Scodellini R., Cincinelli A., Costa C., Mancuso S., Renella G. (2019): Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma, 344: 127-136. Go to original source...
  35. Gregory P.J., Nortcliff S. (2013): Soil Conditions and Plant Growth. 1st Edition. Oxford, Blackwell Publishing Ltd. ISBN: 9781405197700 Go to original source...
  36. Gurevitch J., Koricheva J., Nakagawa S., Stewart G. (2018): Metaanalysis and the science of research synthesis. Nature, 555: 175- 182. Go to original source... Go to PubMed...
  37. Hagner M., Kemppainen R., Jauhiainen L., Tiilikkala K., Setälä H. (2016): The effects of birch (Betula spp.) biochar and pyrolysis temperature on soil properties and plant growth. Soil and Tillage Research, 163: 224-234. Go to original source...
  38. Hailegnaw N.S., Mercl F., Praèke K., Száková J., Tlusto¹ P. (2019): Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19: 2405-2416. Go to original source...
  39. Hall D.J.M., Bell R.W. (2015): Biochar and compost increase crop yields but the effect is short term on sandplain soils of Western Australia. Pedosphere, 25: 720-728. Go to original source...
  40. Hartley W., Riby P., Waterson J. (2016): Effects of three different biochars on aggregate stability, organic carbon mobility and micronutrient bioavailability. Journal of Environmental Management, 181: 770-778. Go to original source... Go to PubMed...
  41. Hedges L.V., Olkin I. (1985): Statistical Methods for Meta-Analysis. New York, Academic Press.
  42. Hedges L.V., Gurevitch J., Curtis P.S. (1999): The meta-analysis of response ratios in experimental ecology. Ecology, 80: 1150-1156. Go to original source...
  43. Herath H.M.S.K., Camps-Arbestain M., Hedley M. (2013): Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma, 209-210: 188-197. Go to original source...
  44. Hijmans R.J., Phillips S., Leathwick J., Elith J. (2017): Species distribution modelling with R. R package "Dismo". Available at: https://cran.r-project.org/web/packages/dismo/vignettes/sdm.pdf (accessed March 13, 2018)
  45. Jeffery S., Meinders M.B.J., Stoof C.R., Bezemer T.M., van de Voorde T.F.J., Mommer L., van Groenigen J.W. (2015): Biochar application does not improve the soil hydrological function of a sandy soil. Geoderma, 251-252: 47-54. Go to original source...
  46. Jeffery S., Verheijen F.G.A., Kammann C., Abalos D. (2016): Biochar effects on methane emissions from soils: a meta-analysis. Soil Biology and Biochemistry, 101: 251-258. Go to original source...
  47. Jiang Y., Carrijo D., Huang S., Chen J., Balaine N., Zhang W.J., van Groenigen K.J., Linquist B. (2019): Water management to mitigate the global warming potential of rice systems: a global metaanalysis. Field Crops Research, 234: 47-54. Go to original source...
  48. Jien S., Wang C. (2013): Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena, 110: 225- 233. Go to original source...
  49. Jindo K., Sánchez-Monedero M.A., Hernández T., García C., Furukawa T., Matsumoto K. (2012): Biochar influences the microbial community structure during manure composting with agricultural wastes. Science of The Total Environment, 416: 476-481. Go to original source... Go to PubMed...
  50. Jones D.L., Murphy D.V., Khalid M., Ahmad W., Edwards-Jones G., DeLuca T.H. (2011): Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biology and Biochemistry, 43: 1723-1731. Go to original source...
  51. Kätterer T., Roobroeck D., Andrén O., Kimutai G., Karltun E., Kirchmann H., Nyberg G., Vanlauwe B., Röing De Nowina K. (2019): Biochar addition persistently increased soil fertility and yields in maize-soybean rotations over 10 years in sub-humid regions of Kenya. Field Crops Research, 235: 18-26. Go to original source...
  52. Kirkby C.A., Richardson A.E., Wade L.J., Passioura J.B., Batten G.D., Blanchard C., Kirkegaard J.A. (2014): Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68: 402-409. Go to original source...
  53. Laghari M., Mirjat M.S., Hu Z.Q., Fazal S., Xiao B., Hu M., Chen Z., Guo D. (2015): Effects of biochar application rate on sandy desert soil properties and sorghum growth. Catena, 135: 313-320. Go to original source...
  54. Laird D.A., Novak J.M., Collins H.P., Ippolito J.A., Karlen D.L., Lentz R.D., Sistani K.R., Spokas K., Van Pelt R.S. (2017): Multi-year and multi-location soil quality and crop biomass yield responses to hardwood fast pyrolysis biochar. Geoderma, 289: 46-53. Go to original source...
  55. Lebrun M., Miard F., Nandillon R., Scippa G.S., Bourgerie S., Morabito D. (2019): Biochar effect associated with compost and iron to promote Pb and As soil stabilization and Salix viminalis L. growth. Chemosphere, 222: 810-822. Go to original source... Go to PubMed...
  56. Lehmann J., Joseph S. (2009): Biochar for environmental management: an introduction. In: Lehmann J., Joseph S. (eds.): Biochar for Environmental Management Science and Technology. UK, Earthscans, 1-12. ISBN: 9780367779184
  57. Li M.F., Wang J., Guo D., Yang R.R., Fu H. (2019): Effect of land management practices on the concentration of dissolved organic matter in soil: a meta-analysis. Geoderma, 344: 74-81. Go to original source...
  58. Li X.X., Chen X.B., Weber-Siwirska M., Cao J.J., Wang Z.L. (2018): Effects of rice-husk biochar on sand-based rootzone amendment and creeping bentgrass growth. Urban Forestry and Urban Greening, 35: 165-173. Go to original source...
  59. Liang B., Lehmann J., Solomon D., Kinyangi J., Grossman J., O'Neill B., Skjemstad J.O., Thies J., Luizão F.J., Petersen J., Neves E.G. (2006): Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70: 1719-1730. Go to original source...
  60. Liang C.F., Gascó G., Fu S.L., Méndez A., Paz-Ferreiro J. (2016): Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil and Tillage Research, 164: 3-10. Go to original source...
  61. Lin Z.B., Liu Q., Liu G., Cowie A.L., Bei Q.C., Liu B.J., Wang X.J., Ma J., Zhu J.G., Xie Z.B. (2017): Effects of different biochars on Pinus elliottii growth, N use efficiency, soil N2O and CH4 emissions and C storage in a subtropical area of China. Pedosphere, 27: 248-261. Go to original source...
  62. Liu C., Wang H.L., Li P.H., Xian Q.S., Tang X.G. (2019a): Biochar's impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls. Science of The Total Environment, 650: 1988-1995. Go to original source... Go to PubMed...
  63. Liu X., Mao P.N., Li L.H., Ma J. (2019b): Impact of biochar application on yield-scaled greenhouse gas intensity: a meta-analysis. Science of The Total Environment, 656: 969-976. Go to original source... Go to PubMed...
  64. Lyu H.H., Gao B., He F., Zimmerman A.R., Ding C., Huang H., Tang J.C. (2018): Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environmental Pollution, 233: 54-63. Go to original source... Go to PubMed...
  65. Meng J., Tao M.M., Wang L.L., Liu X.M., Xu J.M. (2018): Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Science of the Total Environment, 633: 300-307. Go to original source... Go to PubMed...
  66. Minasny B., McBratney A.B., Brough D.M., Jacquier D. (2011): Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration. European Journal of Soil Science, 62: 728-732. Go to original source...
  67. Molnár M., Vaszita E., Farkas É., Ujaczki É., Fekete-Kertész I., Tolner M., Klebercz O., Kirchkeszner C., Gruiz K., Uzinger N., Feigl V. (2016): Acidic sandy soil improvement with biochar - a microcosm study. Science of The Total Environment, 563-564: 855-865. Go to original source... Go to PubMed...
  68. Mukherjee A., Lal R., Zimmerman A.R. (2014): Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Science of the Total Environment, 487: 26-36. Go to original source... Go to PubMed...
  69. Mukherjee A., Zimmerman A.R. (2013): Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma, 193-194: 122-130. Go to original source...
  70. Norini M.-P., Thouin H., Miard F., Battaglia-Brunet F., Gautret P., Guégan R., Le Forestier L., Morabito D., Bourgerie S., MotelicaHeino M. (2019): Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Journal of Environmental Management, 232: 117-130. Go to original source... Go to PubMed...
  71. Obalum S.E., Watanabe Y., Igwe C.A., Obi M.E., Wakatsuki T. (2013): Improving on the prediction of cation exchange capacity for highly weathered and structurally contrasting tropical soils from their fine-earth fractions. Communications in Soil Science and Plant Analysis, 44: 1831-1848. Go to original source...
  72. Omondi M.O., Xia X., Nahayo A., Liu X.Y., Korai P.K., Pan G.X. (2016): Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274: 28-34. Go to original source...
  73. Pandey V., Patel A., Patra D.D. (2016): Biochar ameliorates crop productivity, soil fertility, essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecological Engineering, 90: 361-366. Go to original source...
  74. Peake L.R., Reid B.J., Tang X.G. (2014): Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma, 235-236: 182-190. Go to original source...
  75. Pranagal J., Oleszczuk P., Tomaszewska-Krojañska D., Kraska P., Ró¿y³o K. (2017): Effect of biochar application on the physical properties of Haplic Podzol. Soil and Tillage Research, 174: 92-103. Go to original source...
  76. Purakayastha T.J., Bera T., Bhaduri D., Sarkar B., Mandal S., Wade P., Kumari S., Biswas S., Menon M., Pathak H., Tsang D.C.W. (2019): A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: pathways to climate change mitigation and global food security. Chemosphere, 227: 345-365. Go to original source... Go to PubMed...
  77. Razzaghi F., Obour P.B., Arthur E. (2020): Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma, 361: 114055. Go to original source...
  78. Sandhu S.S., Ussiri D.A.N., Kumar S., Chintala R., Papiernik S.K., Malo D.D., Schumacher T.E. (2017): Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation. Chemosphere, 184: 473-481. Go to original source... Go to PubMed...
  79. Shaaban M., Van Zwieten L., Bashir S., Younas A., Núñez-Delgado A., Chhajro M.A., Kubar K.A., Ali U., Rana M.S., Mehmood M.A., Hu R.G. (2018): A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 228: 429-440. Go to original source... Go to PubMed...
  80. ©imek M., Cooper J.E. (2002): The influence of soil pH on denitrification: progress towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53: 345-354. Go to original source...
  81. Slavich P.G., Sinclair K., Morris S.G., Kimber S.W.L., Downie A., Van Zwieten L. (2013): Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 366: 213-227. Go to original source...
  82. Stefaniuk M., Oleszczuk P., Ró¿y³o K. (2017): Co-application of sewage sludge with biochar increases disappearance of polycyclic aromatic hydrocarbons from fertilized soil in long term field experiment. Science of The Total Environment, 599-600: 854-862. Go to original source... Go to PubMed...
  83. Tan Z.X., Lin C.S.K., Ji X.Y., Rainey T.J. (2017): Returning biochar to fields: a review. Applied Soil Ecology, 116: 1-11. Go to original source...
  84. Unger R., Killorn R., Brewer C.E. (2011): Effects of soil application of different biochars on selected soil chemical properties. Communications in Soil Science and Plant Analysis, 42: 2310-2321. Go to original source...
  85. Vaccari F.P., Maienza A., Miglietta F., Baronti S., Di Lonardo S., Giagnoni L., Lagomarsino A., Pozzi A., Pusceddu E., Ranieri R., Valboa G., Genesio L. (2015): Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems and Environment, 207: 163-170. Go to original source...
  86. Verhoeven E., Six J. (2014): Biochar does not mitigate field-scale N2O emissions in a Northern California vineyard: an assessment across two years. Agriculture, Ecosystems and Environment, 191: 27-38. Go to original source...
  87. Wang D.Y., Fonte S.J., Parikh S.J., Six J., Scow K.M. (2017): Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma, 303: 110-117. Go to original source... Go to PubMed...
  88. Wong J.T.F., Chen X.W., Deng W.J., Chai Y.M., Ng C.W.W., Wong M.H. (2019): Effects of biochar on bacterial communities in a newly established landfill cover topsoil. Journal of Environmental Management, 236: 667-673. Go to original source... Go to PubMed...
  89. Yao Q., Liu J.J., Yu Z.H., Li Y.S., Jin J., Liu X.B., Wang G.H. (2017): Changes of bacterial community compositions after three years of biochar application in a black soil of northeast China. Applied Soil Ecology, 113: 11-21. Go to original source...
  90. Yu H.W., Zou W.X., Chen J.J., Chen H., Yu Z., Huang J., Tang H.R., Wei X.Y., Gao B. (2019): Biochar amendment improves crop production in problem soils: a review. Journal of Environmental Management, 232: 8-21. Go to original source... Go to PubMed...
  91. Zhang W.S., Liang Z.Y., He X.M., Wang X.Z., Shi X., Zou C., Chen X. (2019): The effects of controlled release urea on maize productivity and reactive nitrogen losses: a meta-analysis. Environmental Pollution, 246: 559-565. Go to original source... Go to PubMed...
  92. Zheng J.F., Han J.M., Liu Z.W., Xia W.B., Zhang X.H., Li L.Q., Liu X.Y., Bian R.J., Cheng K., Zheng J.W., Pan G.X. (2017): Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agriculture, Ecosystems and Environment, 241: 70-78. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.