Plant Protect. Sci., 2009, 45(10):S48-S52 | DOI: 10.17221/2835-PPS

Impact of climate change on the occurrence and activity of harmful organisms

Eva Kocmánková1, Miroslav Trnka1, Jan Juroch2, Martin Dubrovský3, Daniela Semerádová1, Martin Možný4, Zdeněk Žalud1
1 Department of Agrosystems and Bioclimatology, Faculty of Agronomy, Mendel University of Agriculture and Forestry in Brno, Brno, Czech Republic
2 State Phytosanitary Administration, Brno, Czech Republic
3 Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
4 Czech Hydrometeorological Institute, Doksany Observatory, Czech Republic

Climate conditions exert a significant influence over the spreading, life cycle duration, infestation pressure and the overall occurrence of majority of agricultural pests and diseases. Recently there is paid a big attention to possible climate change and its impacts resulting the threat to the controlled agro ecosystems. In the context of actual climate change there is likely the shift in the occurrence of some pests and diseases and at the same time also the change of the spectrum of harmful organisms. Direct results of the effect of higher temperatures on the pests' lifecycle can involve the acceleration of pests' development due to the faster achieving of number of degree-days which can result the shift of pests to higher altitudes. There is likely the increase of the number of generations of some pests and higher population density in the consequence of prolonged growing season and the period favourable for reproduction. Changed conditions during the period of overwintering could be the determining factor for population dynamic of insect and fungi.

Keywords: climate change impacts; pests; diseases; temperature; precipitation

Published: December 31, 2009  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Kocmánková E, Trnka M, Juroch J, Dubrovský M, Semerádová D, Možný M, Žalud Z. Impact of climate change on the occurrence and activity of harmful organisms. Plant Protect. Sci.. 2009;45(Special Issue):S48-52. doi: 10.17221/2835-PPS.
Download citation

References

  1. andrew n.r., hughes l. (2005): Diversity and assemblage structure of phytophagous Hemiptera along a latitudinal gradient: predicting the potential impacts of climate change. Global Ecology and Biogeography, 14: 249-262. Go to original source...
  2. Baker r.h.a., Sansford c.e., Jarvis c.h., Cannon r.j.c., MacLeod a., Walters k.f.a. (2000): The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Climates, 82: 57-71. Go to original source...
  3. Bale J.S., Masters G.J., Hodkinson I.D., Awmack C., Bezemer T.M., Brown V.K., Butterfield J.
  4. Climate change and plant pathogens, pests and weeds Buse A., Coulson J.C., Farrar J., Good J.E.G., Harrington R., Harley S., Jones T.H., Lindroth R.L., Press M.C., Symrnioudis I., Watt A.D., Whittaker J.B. (2002): Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biology, 8: 1-16.
  5. Coakley s.m., Scherm h., Chakraborty s. (1999): Climate change and disease management. Annual Review of Phytopathology, 37: 399-426. Go to original source... Go to PubMed...
  6. Gaston K.J., Williams P.H. (1996): Spatial patterns in taxonomic diversity. In: Gaston K.J. (ed.): Biodiversity: a Biology of Numbers and Difference. Blackwell Science, Oxford: 202-229.
  7. Hill J.K., Thomas C.D., Huntley B. (1999): Climate and habitat availability determine 20th century changes in a butterfly's range margin. Proceedings of the Royal Society of London, Series B, Biological Sciences, 266: 1197-1206. Go to original source...
  8. Huber L., Gillespie T.J. (1992): Modeling leaf wetness in relation to plant disease epidemiology. Annual Review Phytopathology, 30: 553-577. Go to original source...
  9. Chakraborty S., Murray G.M., Magarey P.A., Yonow T., O'Brien R., Croft B.J., Barbetti M.J., Sivasithamparam K., Old K.M., Dudzinski M.J., Sutherst R.W., Penrose L.J., Archer C., Emmett R.W. (2000): Potential impact of climate change on plant diseases of economic significance to Australia. Australasian Plant Pathology, 27: 15-35. Go to original source...
  10. IPCC, Climate Change (2007): Impacts, Adaptation and Vulnerability (Summary for Policymakers) [online]. IPCC. 2007. Available at http://www.ipcc.ch/SPM13apr07.pdf (Accessed 20. 4. 2007)
  11. Kocmánková E., Žalud Z., Trnka M., Semerádová D., Dubrovský M., Možný M., Juroch J. (2007): Dopady změny klimatu na klimatickou niku mandelinky bramborové a plísně bramborové ve střední Evropě v roce 2050. In: MendelNet'07 Agro, MZLU v Brně: 31.
  12. Kocmánková E., Trnka M., Žalud Z., Semerádová D., Dubrovský M., Muška F., Možný M. (2008): The comparison of mapping methods of European corn borer (Ostrinia nubilalis) potential distribution. Plant Protection Science, 44: 49-56. Go to original source...
  13. Parmesan C., Ryrholm N., Stefanescu C., Hill J.K., Thomas C.D., Descimon H., Huntley B., Kaila L., Kullberg J., Tammaru T., Tennent W.J., Thomas J.A., Warren M. (1999): Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399: 579-583. Go to original source...
  14. Pollard E., Moss D., Yates T.J. (1995): Population trends of common British butterflies at monitored sites. Journal of Applied Ecology, 32: 9-16. Go to original source...
  15. Porter J.H., Parry M.L., Carter T.R. (1991): The potential effects of climatic change on agriculture insect pests. Agriculture and Forest Meteorology, 57: 221-240. Go to original source...
  16. Rafoss T., Saethre M.G. (2003): Spatial and temporal distribution of bioclimatic potential for the codling moth and the Colorado potato beetle in Norway: model predictions versus climate and field data from the 1990s. Agricultural and Forest Entomology, 5: 75-85. Go to original source...
  17. Rodda G.H., Reed R.N., Jarnevich C.S. (2007): climate matching as a tool for predicting potential north American spread of brown treesnakes. In: Witmer G., Fagerstone K. (eds): Proceedings of Managing Vertebrate invasive Species. National Wildlife Research Center, Fort Collins, Colorado.
  18. Trnka M., Muška F., Semerádová D., Dubrovský M., Kocmánková E., Žalud Z. (2007): European corn borer life stage model: Regional estimates of pest development and spatial distribution under present and expected climate. Ecological Modeling, 207: 61-84. Go to original source...
  19. Wallin J.R., Waggoner P.E. (1950): The influence of climate on the development and spread of Phytophthora infestans in artificially inoculated potato plots. Plant Disease Reporter Supplement, 190: 19-33.
  20. Yamamura K., Kiritani K. (1998): A simple method to estimate the potential increase in the number of generations under global warming in temperate zones. Applied Entomology and Zoology, 33: 289-298. Go to original source...
  21. Yamamura K., Yokozawa M. (2002): Prediction of a geographical shift in the prevalence of rice stripe virus disease transmitted by the small brown planthopper, Laodelphax striatellus (Fallen) (Hemiptera: Delphacidae), under global warming. Applied Entomology and Zoology, 37: 181-190. Go to original source...
  22. Žalud Z., Trnka M., Dubrovský M., Kocmánková E. (2008): Dopady změny klimatu na první výskyt plísně bramborové (Phytophthora infestans (Mont.) de Bary 1876). Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, LVI(2): 267-275, 267-275.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.