google-site-verification: googlefb89bc748c116bef.html
The Use of Electrical Resistivity Tomography to Investigate Basaltic Lava Tunnel Based on the Case Study of Al-Badia Cave in Jordan
PDF

Keywords

lava tunnel
ERT
basaltic flow
Jordan

How to Cite

Al-Amoush, H., & Abu Rajab, J. (2018). The Use of Electrical Resistivity Tomography to Investigate Basaltic Lava Tunnel Based on the Case Study of Al-Badia Cave in Jordan. Indonesian Journal on Geoscience, 5(2), 161–177. https://doi.org/10.17014/ijog.5.2.161-177

Abstract

DOI: 10.17014/ijog.5.2.161-177

Electrical Resistivity Tomography (ERT) was employed to conduct a geoelectrical survey near the Al-Badia lava tunnel located close to the Al-Bishyrria Village in Jordan. The technique enabled the mapping of the subsurface tunnel extension and description of its inner structure. To assess the quality of data and resistivity models, Schlumberger and Reciprocal Schlumberger electrode configurations were used to produce eight ERT profiles. As revealed by the examination of received potential, the implemented configurations exhibited a strong signal, producing an approximated reciprocal error of up to 6%. The findings of ERT models showed that the lava tunnel had a clearly outlined structure with an elliptical to rectangular shape. The modelled resistivity of the lava tunnel was obtained in proximity to 1000 Ω-m, with a better characterization being possible at resistivity exceeding 8000 Ω-m in 200 Ω-m of Fahda Vesicular Basalt medium. An exploration depth of 50 m revealed that the lava tunnel was 10 m deep and 5 m in diameter on the average. Furthermore, potential means of groundwater recharging were reported by the simultaneous detection of a number of resistivity anomalies of less than 50 Ω-m and lava tunnel. In addition, the lava tunnel was observed to extend and ramify beyond the area under investigation, indicating at the potential existence of multiple lava tunnel extensions in both the investigation area and in the basaltic flows, which could have adverse implications for future urban projects.

https://doi.org/10.17014/ijog.5.2.161-177
PDF

References

Abed, A., Khoury H., and Kruhl, H., 1985. On the structure of Jabal Aritayn Volcano (NEJordan) and the petrography of some xenoliths. Dirasat. 12, p.109-124.

Al-Amoush, H., 2010. Integrations of vertical electrical sounding and aeromagnetic data using GIS techniques to assess the potential of unsaturated zone and Volcanic Basaltic Caves for groundwater artificial recharge in NE-Jordan,” Jordan Journal of Civil Engineering,vol. 4, (4), p. 389-408.

Al-Malabeh, A., 1994. Geochemistry of two volcanic cones from the intra-continental plateau basalt of Harrat El-Jabban, NE-Jordan. Geochemical Journal. 28: p.517-540.

Al-Malabeh, A., 1989. The volcanic successions of Jebel Aritain volcano, NE-Jordan: A field, petrographic and geochemical study, MSc Theis at Yarmouak University, Faculty of Sciences, Jordan, p.182. DOI:10.2343/geochemj.28.517

Al-Malabeh, A., 1989. The volcanic successions of Jebel Aritain volcano, NE-Jordan: A field, petrographic and geochemical study, M.Sc. Thesis at Yarmouk University, Faculty of Sciences,

Jordan, 182pp.

Al-Malabeh, A. and Kempe, S., 2012. Hashemite University Cave, Jordan. Proceedings of the International Symposium on Vulcanospeleology, March 15 - 22, Jordan.

Al-Oufi A, Mustafa, H.A. Al-Tarazi, E. and Abu Rajab, J., 2008. Exploration of the extension of two lava tubes, faults and dikes using very low frequency-electromagnetic technique in NE Jordan, Acta Geophysica. 56, (2), p. 466-484. DOI:10.2478/s11600-008-0009-y

Al-Oufi, A., 2006. Geophysical Exploration of Lava Tubes in Umm El-Qutein area, NE Jordan, M.Sc. Thesis at Yarmouk University, Faculty of Sciences, Jordan.

Al-Oufi, A., Al-Malabeh, A., and Al-Tarazi, E., 2012. Characterization of Lava Caves, Using 2D Induced Polarization Imaging, Umm Al Quttein area, NE Jordan. Proceedings of 15th International Symposium On Vulcanospeleology, March 15 - 22 Jordan.

Al-Dmour, T. M., 1992. Interpreting the geology of Azraq, south area of Jordan, using landsat TM data. Internal Report, Geology Directorate, NRA, Jordan.Al-Dmour, T. M., 1992. Interpreting the geology of Azraq, south area of Jordan, using landsat TM data. Internal Report, Geology directorate, NRA, Jordan.

Arsalan, F. A., 1974. Geologie und Hydrogeologie der Azraq-Depression (Ost Jordanien), Unpublished Ph.D. Thesis.

Barberi, F., Capaldi, P., Gasperini, G., Marineli, G., Santacroce, T., Scandore, R. Treuil, M., and Varet, J. 1979. Recent basaltic volcanism of Jordan and its implications on the geodynamic history of the Dead Sea shear zone. Geodynamic Evolution of the Afro-Arabian Rift System: International Symposium, p.667-682.

Bender, F., 1968. Geologie von Jordanian, Gebrüder Bornträger, Berlin, 230pp.

Bender, F.,1974. Geology of Jordan. Supplementary edition in English with minor revisions. (Gebr. Borntraeger), Berlin. 196pp.

Binley, Ramirez, A., and Daily, W., 1995. Regularised image reconstruction of noisy electrical resistance tomography data, In: Beck, M.S., Hoyle, B.S., Morris, M.A., Waterfall, R.C., and Williams, R.A., (eds), Process tomography: Proceedings, 4th Workshop of the European Concerted Action on Process Tomography, p.401-410.

Calvari, S. and Pinkerton, H., 1998. Formation of lava tubes and extensive flow field during the 1991 - 1993 eruption of Mount Etna. Journal of Geophysical Research, 103 (B11), p.27291-27301. DOI:10.1029/97JB03388.

Dahlin, T. and Zhou., 2004. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52, p.379-398. DOI:10.1111/j.1365-2478.2004.00423.x

deGroot-Hedlin, C. and Constable, S., 1990. Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics, 55 (12), p.1613-1624.

Doss, B.,1886. Die basaltischen laven and tuffe der Provinz Hauran und von diret et Tulul in Syria. Tschemarks, Mineralogische und Petrographhisce Mitteilurgen, Neue Folge, Vienna, 7.Bd, p.461-534.

Gibbs, B., 1993. Hydrogeology of the Azraq basin northeast Badia, Jordan. Unpublished M.Sc. Thesis at University College, London.

Ibrahim, K., and Al-Malabeh, A., 2006. Geochemistry of El-Fada flow and the associated pressure ridges. J. Asian Sci., in press.

Ibrahim, K.,1997. The geology of Al Bishryya (Al Aritayn) area map sheet No. 3553 I (with special reference to the geology of the economic zeolites deposits). Natural Resources Authority, Geological Map divison., Bulletin 39, p.54.

Ibrahim, K.M., 1993a.The geology framework for the Harrat Ash-Shaam Basaltic Supergroup and its volcanotectonic evolution. Internal Report, Natural Resources Authority, Geological Map Divison, Bulletin 25, 33.

Ibrahim, K.M., 1996a. Geology, mineralogy, chemistry, origin and uses of the zeolites associated with quaternary tuffs of Northeast Jordan, PhD Thesis at Royal Hollway, Universty of London, p.245.

Ibrahim, K.M.,1996b.The regional Geology af Al Azraq area map sheet No. 3553 I. Scale: 1:50,000, Natural Resources Authority, Geological Map division., Bulletin 36, 67p.

Ibrahim, K.M. and Hall, A., 1995. New occurrences of diagenetic faujasite in the quaternary tuff of north-east Jordan, Eur. J. Mineral., 7, p. 1129-1135.

Ibrahim, K.M. and Hall, A., 1996. The authigenic zeolite of the Aritayn volcaniclastic formation, north-east Jordan, Mineral. Deposit, 31, p.514-522.

Ibrahim, K.M., 2000. New occurrence of mantle and crustal xenoliths in the Badia Area, NE-Jorda. Submitted to J. African Earth sciences, Elsevier.

Ibrahim, K., Rabba, I. Tarawneh, K. ,2001. Geological and mineral occurrences map of the northern Badia region, scale map 1:250,000, Jordan. The Higher Council for Science and Technology, NRA, Jordan Badia Research and Development Programm, Geology Directorate Geological Mapping Division, Amman-Jordan, 136.

Illani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim, K.M., Peltz, S., Steinitz, G., 2001. New K–Ar ages of basalt from the Harrat Ash Shaam volcanic field in Jordan: implications for the span and duration of the upper mantle upwelling beneath the western Arabian plate. Geology, 29, p.171–174.

Kerr, R. C., Griffiths, R. W. and K. V. Cashman, K.V. 2006. Formation of channelized lava flows on an unconfined slope, J. Geophys. Res., 111, B10206, doi:10.1029/2005JB004225

Kempe, S., Al-Malabeh, A., Frehat, M. and Henschel, H.V., 2006. State of lava cave research in Jordan. - Proceeding. 12th Intern. Symp. on Vulcanospeleology, Tepo, Mexico, 2- 7 July 2006, Mexico.

Kempe, S., Al-Malabeh, A., and Horst-Volker Henschel, H. V., 2012. Jordanian lava caves, an overview, Proceedings,15th International Symposium on Vulcanospeleology, March 15 - 22, Jordan.

Kwon, B.D., Lee, H.S., Oh, S.H., and Lee, C.K., 1998. Application of multiple geophysical methods in investigating the lava tunnel of Manjanggul in Cheju Island. Economic and Environmental Geology, 31, p.535-545.

Lartet, L., 1869. La geologie de la Palastine. These, University of Paris, Messon, 292pp.

Loke, M. H., Acworth, I., and Dahlin, T., 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34 (3), p.182-187. DOI:10.1071/EG03182

Loke, M. H., 2002. RES2DINV ver. 3.54. Rapid 2-D resistivity and IP inversion using the least square method. Geotomo Software.

Loke, M. H., 2013. Tutorial: 2-D and 3-D electrical imaging surveys. Available at www.geoelectrical.com.

Melnik O., 2017. Flow rate estimation in a lava tube based on surface temperature measurements, Geophysical Journal International, 208, p.1716-1723. DOI:10.1093/gji/ggw475

Moffat, D.T.,1988. A volcanotectonic analysis of the Cenozoic continental basalts of northern Jordan; implications for hydrocarbon prospecting in the block B area. ERI Jordan EJ88-1, 73pp.

Gómez-, O.D., S., Martín-Velázquez, T., Martín-Crespo, A., Márquez, J., Lillo, I., López, F., Carreño, F., Martín-González, R., Herrera, and De Pablo, M.A., 2007. Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). Journal of Applied Geophysics, 62, p.287-300. Natural Resources Authority (NRA). 2008. Internal open files.www.nra.gov.jo. DOI: 10.1016/j.jappgeo.2007.01.002

Gómez-, O.D., S., Montesinos, F.G., Solla, C.M., Arnoso, J., and Vélez, E., 2014. Combination of geophysical prospecting techniques into areas of high protection value: Identification of shallow volcanic structures. Journal of Applied Geophysics, 109, p.15-26. DOI:10.1016/j.jappgeo.2014.07.009

Ramirez A., Daily W., Binley A., and LaBrecque D., 1999. Electrical Impedance Tomography of Known Targets. Journal of Environmental and Engineering Geophysics, 4, p.11-26. DOI:10.4133/JEEG4.1.11

Shawaqfah, M.I., Alqdah, I., and Nusier, O.K., 2014. Water Resources Management Using Modeling Tools in Desert Regions: The Azraq Basin, Jordan. International Journal of Modeling and Optimization, 5 (1), p.55-58. DOI:10.7763/IJMO.2015.V5.436

Tarawneh, K., Ilani, S., Rabba, I., Harlavan, Y., Peltz, S., Ibrahim, K., Weinberger, R., and Steinitz, G., 2000. Dating of the Harrat Ash Shaam Basalts Northeast Jordan (Phase 1). National Resources Authority and the Geological Survey of Israel.

Van Den Boom, G. and Sawwan, O., 1966. Report on geological and petrological studies of the plateau basalts in NE Jordan. German Geological Mission, Amman, 42pp.

Wilkinson, P., Jonathan, E., Chambers, Lelliott, M., Gary P., Wealthall, Richard, and Ogilvy,D., 2008. Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors. Geophysical Journal International, 173 (1), 1, p.49-62. DOI:10.1111/j.1365-246X.2008.03725.x.

Zhou, B. and Dahlin, T., 2003. Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surface Geophysics, 1 (3), p.105-117. DOI:10.3997/1873-0604.2003001

IJOG as the journal holds copyright of the published papers.