Research Article
BibTex RIS Cite

Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test

Year 2018, Volume: 22 Issue: 1, 85 - 93, 01.02.2018
https://doi.org/10.16984/saufenbilder.306203

Abstract

The perturb & observe (P&O) and
incremental conductance algorithms, which are widely used in maximum power
point tracker systems. In this study, A SEPIC (single-ended primary inductance
converter) DC/DC converter is designed for maximum power point tracker, and
both algorithms are implemented on the SEPIC converter by using DSP. The
performance of maximum power point tracker (MPPT) in PV system under dynamic
environmental conditions (such as irradiation, dirt, temperature) is very
important in the point of its efficiency. EN 50530 standard, which is provides
a procedure for the measurement of the efficiency, is used to evaluate the
dynamic performance of the both MPPT algorithms in this paper. The experiments
are conducted using the dynamic performance test platform that consists of a PV
array simulator, SEPIC DC/DC converter and DSP. The results show that
efficiencies and performances of the both MPPT algorithms are very close to
each other. The obtained results show that both algorithms have fast dynamic
response and the average efficiencies are over 99% with the designed system at
100Hz of MPPT frequencies for over all slopes and irradiance in the range from
0.5 to 100 W/m2/s and 100 W/m2- 1000W/m2 as
defined by EN 50530 standard.

References

  • [1] V. Eng and C. Bunlaksananusorn, “Modeling of a SEPIC converter operating in continuous conduction mode,” in Proc. 6th ECTI-CON, pp. 136–139, May 2009.
  • [2] S. J. Chiang and H. J. Shieh, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.
  • [3] H.S. Chung et al., “Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter”, IEEE Trans. Power Electron., vol. 18, no. 3, pp. 717–724, May. 2003.
  • [4] A.E. Khateb et al., “Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral derivative controller”, IET Power Electron., Vol. 6, Iss. 6, pp. 1111–1121, 2013.
  • [5] E.Mamarelis et al., “Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications”, IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3387–3398, Jul. 2014.
  • [6] M. Killi and S. Samanta, “An Adaptive Voltage-Sensor-Based MPPT for Photovoltaic Systems With SEPIC Converter Including Steady-State and Drift Analysis”, IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7609–7619, Dec. 2015.
  • [7] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC Rectifier With Reduced Components and Conduction Losses”, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sept. 2011.
  • [8] H. Ma et al., “A Novel Valley-Fill SEPIC-derived Power Supply Without Electrolytic Capacitors for LED Lighting Application”, IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.
  • [9] H.J. Chiu et al., “A High Efficiency Dimmable LED Driver for Low-Power Lighting Applications”, IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735–743, Feb. 2010.
  • [10] Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems. IEEE Journal of Photovoltaics, 3(3), 1070–1078. https://doi.org/10.1109/JPHOTOV.2013.2261118.
  • [11] Ahmed, J., Ahmed, J., Member, S., & Salam, Z. (2016). A Modified P & O Maximum Power Point Tracking Method with Reduced Steady State Oscillation and Improved Tracking Efficiency. IEEE Transactions on Sustainable Energy, 7(October), 1506–1515. https://doi.org/10.1109/TSTE.2016.2568043.
  • [12] Andrejasic, T., Jankoves, M., & Topic, M. (2011). Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure. IET Renewable Power Generation, (January), 281–286. https://doi.org/10.1049/iet-rpg.2010.0175
  • [13] Ishaque, K., & Salam, Z. (2014). Dynamic Efficiency of Direct Control Based Maximum Power Point Trackers. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 429–434). IEEE. https://doi.org/10.1109/ISMS.2014.79
  • [14] Bendib, B., Belmili, H., & Krim, F. (2015). A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637–648. https://doi.org/10.1016/j.rser.2015.02.009
  • [15] Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids. IEEE Transactions on Power Electronics, 26(4), 1010–1021.
  • [16] Ishaque K., Salam Z., A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition, Renew. Sustain. Energy Rev., 2012, 19, 475-488.
  • [17] Saravanan, S., & Ramesh Babu, N. (2016). Maximum power point tracking algorithms for photovoltaic system – A review. Renewable and Sustainable Energy Reviews, 57, 192–204. https://doi.org/10.1016/j.rser.2015.12.105.

Değiştir&gözle ve artımsal iletkenlik algoritmalarının EN 50530 dinamik verim testine göre performanslarının değerlendirilmesi

Year 2018, Volume: 22 Issue: 1, 85 - 93, 01.02.2018
https://doi.org/10.16984/saufenbilder.306203

Abstract

Değiştir&gözle (D&G) ve Artımsal
iletkenlik algoritmaları maksimum güç noktası izleyici (MGNİ) sistemlerinde
yaygın bir şekilde kullanılmaktadır. Bu çalışmada, bu iki algoritma SEPIC
(Single Ended Primary Inductance Converter) DA/DA dönüştürücü devresi üzerinde
uygulanmıştır. Algoritmaların gerçekleştirilmesi ve diğer tüm denetim için
TMS320F28377 DSP (Digital Signal Processor) işlemcisi kullanılmıştır. MGNİ’nin
dinamik çevre koşullarındaki (ışınım, kir, sıcaklık gibi) performansı verim
bakımından önemlidir. Verim ölçümü için yöntem sağlayan EN 50530 standardı, bu
çalışmada her iki MGNİ tekniğinin dinamik performansını değerlendirmek için
kullanılmaktadır. Bu standardın test profil eğrileri fotovoltaik (FV)
simülatörden elde edilmiştir. MGNİ verim testi, FV simülatör, SEPIC DA/DA
dönüştürücü ve DSP'den oluşan dinamik performans test platformu kullanılarak
gerçekleştirilmiştir ve deneyler esnasında MGNİ frekansı 100Hz olarak
ayarlanmıştır. EN 50530 standardında belirtildiği üzere, ışınım değişimi
100-1000W/m2 arasında, ışınım değişim eğiminin ise 0,5-100W/m2/s
arasında değerler almaktadır. Elde edilen sonuçlar, tasarlanan sistem ile her
iki algoritma, yukarıda değinilen ışınım değişimlerine hızlı cevap verebilmiş
ve ortalama verimlilikleri % 99'un üzerinde elde edilmiştir. Ayrıca her iki
algoritmanın ışınım değişimlerini izleyebilme performansı ve verimlerinin
birbirine çok yakın olduğu gösterilmiştir.

References

  • [1] V. Eng and C. Bunlaksananusorn, “Modeling of a SEPIC converter operating in continuous conduction mode,” in Proc. 6th ECTI-CON, pp. 136–139, May 2009.
  • [2] S. J. Chiang and H. J. Shieh, “Modeling and control of PV charger system with SEPIC converter,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4344–4353, Nov. 2009.
  • [3] H.S. Chung et al., “Novel Maximum Power Point Tracking Technique for Solar Panels Using a SEPIC or Cuk Converter”, IEEE Trans. Power Electron., vol. 18, no. 3, pp. 717–724, May. 2003.
  • [4] A.E. Khateb et al., “Maximum power point tracking of single-ended primary-inductor converter employing a novel optimisation technique for proportional-integral derivative controller”, IET Power Electron., Vol. 6, Iss. 6, pp. 1111–1121, 2013.
  • [5] E.Mamarelis et al., “Design of a Sliding-Mode-Controlled SEPIC for PV MPPT Applications”, IEEE Trans. Ind. Electron., vol. 61, no. 7, pp. 3387–3398, Jul. 2014.
  • [6] M. Killi and S. Samanta, “An Adaptive Voltage-Sensor-Based MPPT for Photovoltaic Systems With SEPIC Converter Including Steady-State and Drift Analysis”, IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7609–7619, Dec. 2015.
  • [7] M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC Rectifier With Reduced Components and Conduction Losses”, IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4153–4160, Sept. 2011.
  • [8] H. Ma et al., “A Novel Valley-Fill SEPIC-derived Power Supply Without Electrolytic Capacitors for LED Lighting Application”, IEEE Trans. Power Electron., vol. 27, no. 6, pp. 3057–3071, Jun. 2012.
  • [9] H.J. Chiu et al., “A High Efficiency Dimmable LED Driver for Low-Power Lighting Applications”, IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 735–743, Feb. 2010.
  • [10] Sera, D., Mathe, L., Kerekes, T., Spataru, S. V., & Teodorescu, R. (2013). On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems. IEEE Journal of Photovoltaics, 3(3), 1070–1078. https://doi.org/10.1109/JPHOTOV.2013.2261118.
  • [11] Ahmed, J., Ahmed, J., Member, S., & Salam, Z. (2016). A Modified P & O Maximum Power Point Tracking Method with Reduced Steady State Oscillation and Improved Tracking Efficiency. IEEE Transactions on Sustainable Energy, 7(October), 1506–1515. https://doi.org/10.1109/TSTE.2016.2568043.
  • [12] Andrejasic, T., Jankoves, M., & Topic, M. (2011). Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic test procedure. IET Renewable Power Generation, (January), 281–286. https://doi.org/10.1049/iet-rpg.2010.0175
  • [13] Ishaque, K., & Salam, Z. (2014). Dynamic Efficiency of Direct Control Based Maximum Power Point Trackers. In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation (pp. 429–434). IEEE. https://doi.org/10.1109/ISMS.2014.79
  • [14] Bendib, B., Belmili, H., & Krim, F. (2015). A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems. Renewable and Sustainable Energy Reviews, 45, 637–648. https://doi.org/10.1016/j.rser.2015.02.009
  • [15] Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-Performance Adaptive Perturb and Observe MPPT Technique for Photovoltaic-Based Microgrids. IEEE Transactions on Power Electronics, 26(4), 1010–1021.
  • [16] Ishaque K., Salam Z., A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition, Renew. Sustain. Energy Rev., 2012, 19, 475-488.
  • [17] Saravanan, S., & Ramesh Babu, N. (2016). Maximum power point tracking algorithms for photovoltaic system – A review. Renewable and Sustainable Energy Reviews, 57, 192–204. https://doi.org/10.1016/j.rser.2015.12.105.
There are 17 citations in total.

Details

Subjects Electrical Engineering
Journal Section Research Articles
Authors

Onur Kırcıoğlu This is me 0000-0002-0217-2274

Murat Ünlü 0000-0002-7650-119X

Sabri Çamur

Publication Date February 1, 2018
Submission Date April 14, 2017
Acceptance Date October 10, 2017
Published in Issue Year 2018 Volume: 22 Issue: 1

Cite

APA Kırcıoğlu, O., Ünlü, M., & Çamur, S. (2018). Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. Sakarya University Journal of Science, 22(1), 85-93. https://doi.org/10.16984/saufenbilder.306203
AMA Kırcıoğlu O, Ünlü M, Çamur S. Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. SAUJS. February 2018;22(1):85-93. doi:10.16984/saufenbilder.306203
Chicago Kırcıoğlu, Onur, Murat Ünlü, and Sabri Çamur. “Performance Evaluation of the Perturb & Observe and Incremental Conductance Algorithms According to the EN 50530 Dynamic Efficiency Test”. Sakarya University Journal of Science 22, no. 1 (February 2018): 85-93. https://doi.org/10.16984/saufenbilder.306203.
EndNote Kırcıoğlu O, Ünlü M, Çamur S (February 1, 2018) Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. Sakarya University Journal of Science 22 1 85–93.
IEEE O. Kırcıoğlu, M. Ünlü, and S. Çamur, “Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test”, SAUJS, vol. 22, no. 1, pp. 85–93, 2018, doi: 10.16984/saufenbilder.306203.
ISNAD Kırcıoğlu, Onur et al. “Performance Evaluation of the Perturb & Observe and Incremental Conductance Algorithms According to the EN 50530 Dynamic Efficiency Test”. Sakarya University Journal of Science 22/1 (February 2018), 85-93. https://doi.org/10.16984/saufenbilder.306203.
JAMA Kırcıoğlu O, Ünlü M, Çamur S. Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. SAUJS. 2018;22:85–93.
MLA Kırcıoğlu, Onur et al. “Performance Evaluation of the Perturb & Observe and Incremental Conductance Algorithms According to the EN 50530 Dynamic Efficiency Test”. Sakarya University Journal of Science, vol. 22, no. 1, 2018, pp. 85-93, doi:10.16984/saufenbilder.306203.
Vancouver Kırcıoğlu O, Ünlü M, Çamur S. Performance evaluation of the perturb & observe and incremental conductance algorithms according to the EN 50530 dynamic efficiency test. SAUJS. 2018;22(1):85-93.

Sakarya University Journal of Science (SAUJS)