Skip to main content
Log in

Isotopic evidence of methane oxidation across the surface water-ground water interface

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Biogenic methane (CH4) from wetlands plays a crucial role in the carbon cycle, but the dynamics of dissolved methane flux across the surface water-ground water interface remain poorly understood. This study focused on the effects of spatial transformation of dissolved methane and the role of ground-water recharge in the distribution of dissolved methane across the surface water-ground water interface. Here we present carbon isotopic measurements of biogenic methane and dissolved inorganic carbon (DIC) from the Sarita Wetland, on the St. Paul Campus of the University of Minnesota, and also in six monitoring wells located down gradient from the wetland. The δ13C values of CH4 vary between −10.6 and −58.4‰, and the δ13C values of DIC vary between +0.8 and −14.1‰ across the study site. Based on dissolved methane concentrations during the growing season, we estimate that ground water methane represents 8%–38% of total methane dissolved in the wetland. Using the carbon isotopic composition of methane and knowledge of the site hydrology, we found that the degree of methane oxidation increased as methane moved away from the wetland along the ground water flowpath. The proportion of methane oxidized ranged between 4% and 99% with most of the methane oxidation occurring within the first 120 m from the wetland. The degree of oxidation within the wetland itself varied from 81% in the spring to 99% during the winter, suggesting that oxidation of dissolved methane occurs more rapidly in surface waters than in ground water recharge. This study shows that ground water flow paths are a primary control on the export of dissolved methane produced in wetlands. This study also demonstrates that C stable isotopes can be used to study transport of dissolved methane across the surface water-ground water interface, accounting for methane oxidation during transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Abichou, T., D. Powelson, J. Chanton, S. Escoriaza, and J. Stern. 2006. Characterization of methane flux and oxidation at a solid waste landfill. Journal of Environmental Engineering-ASCE 132: 220–28.

    Article  CAS  Google Scholar 

  • Alperin, M. J., W. S. Reeburgh, and J. M. Whiticar. 1988. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Global Biogeochemical Cycles 2: 279–91.

    Article  CAS  Google Scholar 

  • Barker, J. F. and P. Fritz. 1981. Carbon isotope fractionation during microbial methane oxidation. Nature 293: 289–91.

    Article  CAS  Google Scholar 

  • Bastviken, D., J. Ejlertsson, and L. Tranvik. 2002. Measurement of methane oxidation in lakes: a comparison of methods. Environmental Science and Technology 36: 3354–61.

    Article  CAS  PubMed  Google Scholar 

  • Beer, J. and C. Blodau. 2007. Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochimica et Cosmochimica Acta 71: 2989–3002. doi:10.1016/j.gca.2007.03.010.

    Article  CAS  Google Scholar 

  • Bergamaschi, P., C. Lubina, R. Konigstedt, H. Fischer, A. C. Veltkamp, and O. Zwaagstra. 1998. Stable isotopic signatures (delta C-13, delta D) of methane from European landfill sites. Journal of Geophysical Research 103: 8251–65.

    Article  CAS  Google Scholar 

  • Bousquet, P., P. Ciais, J. B. Miller, E. J. Dlugokencky, D. A. Hauglustaine, C. Prigent, G. R. Van der Werf, P. Peylin, E. G. Brunke, C. Carouge, R. L. Langenfelds, J. Lathiere, F. Papa, M. Ramonet, M. Schmidt, L. P. Steele, S. C. Tyler, and J. White. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443: 439–43.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, C., A. Baker, S. Cumberland, I. Boomer, and I. P. Morrissey. 2007. Dynamics of water movement and trends in dissolved carbon in a headwater wetland in a permeable catchment. Wetlands 27: 1066–80.

    Article  Google Scholar 

  • Darling, W. G. and D. C. Gooddy. 2006. The hydrogeochemistry of methane: evidence from English groundwaters. Chemical Geology 229: 293–312.

    Article  CAS  Google Scholar 

  • De Visscher, A., I. De Pourcq, and J. Chanton. 2004. Isotopic fractionation effects by diffusion and methane oxidation in landfill cover soils. Journal of Geophysical Research 109: D18111. doi:10.1029/2004JD004857.

    Article  CAS  Google Scholar 

  • De Visscher, A. and O. Van Cleemput. 2003. Simulation model for gas diffusion and methane oxidation in landfill cover soils. Waste Management 23: 581–91.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R., D. Lowry, O. Wilkin, S. Sriskantharajah, and E. G. Nisbet. 2006. High-precision, automated stable isotope analysis of atmospheric methane and carbon dioxide using continuous-flow isotope-ratio mass spectrometry. Rapid Communications in Mass Spectrometry 20: 200–08. doi: 10.1002/rcm.2300.

    Article  CAS  PubMed  Google Scholar 

  • Frenzel, P. and E. Karofeld. 2000. CH4 emission from a hollowridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51: 91–112.

    Article  CAS  Google Scholar 

  • Giani, L., J. Bredenkamp, and I. Eden. 2002. Temporal and spatial variability of the CH4 dynamics of landfill cover soils. Journal of Plant Nutrition and Soil Science 165: 205–10.

    Article  CAS  Google Scholar 

  • Gooddy, D. C. and W. G. Darling. 2005. The potential for methane emissions from groundwaters of the UK. Science of the Total Environment 339: 117–26.

    Article  CAS  PubMed  Google Scholar 

  • Grossman, E. L., L. A. Cifuentes, and I. M. Cozzarelli. 2002. Anaerobic methane oxidation in a landfill-leachate plume. Environmental Science and Technology 36: 2436–42.

    Article  CAS  PubMed  Google Scholar 

  • Happell, J. D., J. P. Chanton, and W. S. Showers. 1994. The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests. Geochimica et Cosmochimica Acta 58: 4377–88.

    Article  CAS  Google Scholar 

  • Kinnaman, F. S., D. L. Valentine, and S. C. Tyler. 2007. Carbon and hydrogen isotope fractionation associated with aerobic microbial oxidations of methane, ethane, propane and butane. Geochimica et Cosmmochimica Acta 71: 271–83.

    Article  CAS  Google Scholar 

  • Liblik, L. K., T. R. Moore, J. L. Bubier, and S. D. Robinson. 1997. Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Global Biogeochemical Cycles 11: 485–94.

    Article  CAS  Google Scholar 

  • Liptay, K., J. Chanton, P. Czepiel, and B. Mosher. 1998. Use of stable isotopes to determine methane oxidation in landfill cover soils. Journal of Geophysical Research 103: 8243–50.

    Article  CAS  Google Scholar 

  • McAuliffe, C. 1971. GC determination of solutes by multiple phase equilibrium. Chemical Technology 1: 46–51.

    Google Scholar 

  • Miller, J. B., K. A. Mack, R. Dissly, J. W. C. White, E. J. Dlugokencky, and P. P. Tans. 2002. Development of analytical methods and measurements of 13C/12C in atmospheric CH4 from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research 107. doi: 10.1029/2001JD000630.

  • Miyajima, T., Y. Yamada, and Y. T. Hanba. 1995. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnology and Oceanography 40: 994–1000.

    Article  Google Scholar 

  • NWWG. 1997. The Canadian Wetland Classification System. National Wetlands Working Group, Wetlands Research Centre, University of Waterloo, Waterloo, ON, Canada.

    Google Scholar 

  • Reeburgh, W. S. 2003. Global methane biogeochemistry. p. 65–89. In R. F. Keeling (ed.) The Atmosphere, Volume 4 of H. D. Holland and K. K. Turekian (eds.) Treatise on Geochemistry. Elsevier: Pergamon, Oxford, UK.

    Google Scholar 

  • Rice, A. L., A. A. Gotoh, H. O. Ajie, and S. C. Tyler. 2001. Highprecision continuous-flow measurement of δ13C and δD of atmospheric CH4. Analytical Chemistry 73: 4104–10.

    Article  CAS  PubMed  Google Scholar 

  • Schoell, M. 1980. The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochimica et Cosmochimica Acta 44: 649–61.

    Article  CAS  Google Scholar 

  • Simpkins, W. W. and T. B. Parkin. 1993. Hydrogeology and redox geochemistry of CH4 in a Late Wisconsinian till and loess sequence in Central Iowa. Water Resources Research 29: 3643–57.

    Article  CAS  Google Scholar 

  • Strayer, R. F. and J. M. Tiedje. 1978. In situ methane production in a small, hypereutrophic, hard-water lake: loss of methane from sediments by vertical diffusion and ebullition. Limnology and Oceanography 23: 1201–06.

    CAS  Google Scholar 

  • Tarasova, O. A., C. A. M. Brenninkmeijer, S. S. Assono, N. F. Elansky, T. Röckmann, and M. Brass. 2006. Atmospheric CH4 along the Trans-Siberian railroad (TROICA) and river Ob: source identification using stable isotope analysis. Atmospheric Environment 40: 5617–28.

    Article  CAS  Google Scholar 

  • Teh, Y. A., W. L. Silver, and M. E. Conrad. 2005. Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology 11: 1283–97.

    Article  Google Scholar 

  • Teh, Y. A., W. L. Silver, M. E. Conrad, S. E. Borglin, and C. M. Carlson. 2006. Carbon isotope fractionation by methaneoxidizing bacteria in tropical rain forest soils. Journal of Geophysical Research 111: G02001. doi:10.1029/2005JG000053.

    Article  CAS  Google Scholar 

  • Tyler, S. 1991. The global methane budget. p. 7–38. In J. Rogers and W. Whitman (eds.) Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes. American Society of Microbiology, Washington, DC, USA.

    Google Scholar 

  • Van Breukelen, B. M. and J. Griffioen. 2004. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. Journal of Contaminant Hydrology 73: 181–205.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, J. M. and N. T. Roulet. 1997. Groundwater flow and dissolved carbon movement in a boreal peatland. Journal of Hydrology 191: 122–38.

    Article  CAS  Google Scholar 

  • Wahlen, M. 1993. The global methane cycle. Annual Reviews Earth Planetary Sciences 21: 407–26.

    Article  CAS  Google Scholar 

  • Whalen, S. C. 2005. Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environmental Engineering Science 22: 73–94.

    Article  CAS  Google Scholar 

  • Whiticar, M. J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161: 291–314.

    Article  CAS  Google Scholar 

  • Whiticar, M. J. 2000. Can stable isotopes and global budgets be used to constrain atmospheric methane budgets? p. 63–85. In M. A. K. Khalil (ed.) Atmospheric Methane: Its Role in the Global Environment. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Whiticar, M. J. and E. Faber. 1986. Methane oxidation in sediment and water column environments — isotopic evidence. Organic Geochemistry 10: 759–68.

    Article  CAS  Google Scholar 

  • Whiting, G. J. and J. P. Chanton. 1993. Primary production control of methane emission from wetlands. Nature 364: 794–95.

    Article  CAS  Google Scholar 

  • Whiting, G. J. and J. P. Chanton. 2001. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus 53B: 521–28.

    CAS  Google Scholar 

  • Xing, Y. P., P. Xie, H. Yang, Y. Ni, Y. S. Wang, and K. W. Rong. 2005. Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical lake in China. Atmospheric Environment 39: 5532–40.

    Article  CAS  Google Scholar 

  • Zhang, C. L., E. L. Grossman, and J. W. Ammerman. 1998. Factors influencing methane distribution in Texas ground water. Ground Water 38: 58–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riveros-Iregui, D.A., King, J.Y. Isotopic evidence of methane oxidation across the surface water-ground water interface. Wetlands 28, 928–937 (2008). https://doi.org/10.1672/07-191.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/07-191.1

Key Words

Navigation