Skip to main content
Log in

Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Historically, depressional wetlands have been viewed as small, closed basins without a naturally integrated inter-wetland surface drainage system. In this view, landscape-level connectivity is limited to surface water as overland flow. Contrasting with this view, conceptual prairie pothole ground-water models have relied on ground-water connectivity to explain inter-wetland differences in salinity, duration of inundation, and vegetation structure. To help clarify this contrast, we compared differences in hydrology, ground-water connectivity, near-surface soil moisture, geomorphology, water chemistry, and vegetation community structure and productivity for a suite of depressional wetlands in an intermontane prairie of western Montana. We compared depressional wetlands with and without temporary (< 4 wk) surface-water and/or soil-water connections. Connected wetlands had significantly smaller catchments, but stored more water, stored water longer, and had higher specific conductance than did isolated wetlands. Connected wetlands also had higher net primary productivity and a different plant community composition than did isolated wetlands. Comparisons of study site hydrology, water chemistry, and soil development found strong evidence for no ground-water exchange among any of the wetlands. The absence of ground water connection among these intermontane depressional wetlands emphasizes the importance of temporary surface-water and soil-water connections in depressional wetland ecology, as well as the need to understand the landscape scale variation of dissolved solutes and the distribution, abundance, and productivity of wetland plants among depressional wetlands and across wetland landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Alt, D. D. and D. W. Hyndman. 1986. Roadside Geology of Montana. Mountain Press Publishing Company, Missoula, MT, USA.

    Google Scholar 

  • APHA, AWWA, and WEF. 1992. Standard methods for the examination of water and wastewater, eighteenth edition. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Arndt, J. L. and J. L. Richardson. 1988. Hydrology, salinity and hydric soil development in a North Dakota prairie-pothole wetland system. Wetlands 8: 93–108.

    Google Scholar 

  • Arndt, J. L. and J. L. Richardson. 1989. Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. Soil Science Society of America Journal 53: 848–55.

    Article  CAS  Google Scholar 

  • Bedford, B. L. 1996. The need to define hydrologic equivalence at the landscape scale for freshwater wetland mitigation. Ecological Applications 6: 57–68.

    Article  Google Scholar 

  • Bedford, B. L. 1999. Cumulative effects on wetland landscapes: links to wetland restoration in the United States and southern Canada. Wetlands 19: 775–88.

    Google Scholar 

  • Birkland, P. W. 1984. Soils and Geomorphology. Oxford University Press, Inc., New York, NY, USA.

    Google Scholar 

  • Brady, N. C. 1984. The Nature and Properties of Soils, ninth edition. Macmillan Publishers Ltd., New York, NY, USA.

    Google Scholar 

  • Brinkman, R. 1970. Ferrolysis, a hydromorphic soil forming process. Geoderma 3: 199–206.

    Article  CAS  Google Scholar 

  • Brinson, M. M. 1993. A hydrogeomorphic classification for wetlands. U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA. Wetlands Research Program Technical Report WRP-DE-4.

    Google Scholar 

  • Dea, P. A. 1981. Glacial geology of the Ovando Valley, Powell County, Montana. M.S. Thesis. University of Montana, Missoula, MT, USA.

    Google Scholar 

  • Eisenlohr, W. S. 1972. Hydrologic investigations of prairie potholes in North Dakota, 1959–68. U.S. Government Printing Office, Washington, DC, USA. U.S. Geological Survey Professional Paper 585-A.

    Google Scholar 

  • ESRI [Environmental Systems Research Institute]. 1999. Arc/ INFO 7.2. ESRI, Redlands, CA, USA.

    Google Scholar 

  • Euliss, N. H., Jr., J. W. LaBaugh, L. H. Fredrickson, D. M. Mushet, M. K. Laubhan, G. A. Swanson, T. C. Winter, D. O. Rosenberry, and R. D. Nelson. 2004. The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24: 448–58.

    Article  Google Scholar 

  • Euliss, N. H., Jr., and D. M. Mushet. 1996. Water-level fluctuations in wetlands as a function of landscape condition in the prairie pothole region. Wetlands 16: 587–93.

    Article  Google Scholar 

  • Galatowitsch, S. M. and A. G. van der Valk. 1996. The vegetation of restored and natural prairie wetlands. Ecological Applications 6: 102–12.

    Article  Google Scholar 

  • Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual Review of Plant Physiology 31: 149–90.

    Article  CAS  Google Scholar 

  • Hardie, L. A. and H. P. Eugster. 1970. The evolution of closedbasin brines. Mineralogical Society of America Special Paper 3: 273–90.

    Google Scholar 

  • Hayashi, M., G. van der Kamp, and D. L. Rudolph. 1998. Water and solute transfer between a prairie wetland and adjacent uplands, 1. Water balance. Journal of Hydrology 207: 42–55.

    Article  CAS  Google Scholar 

  • Hutchinson, G. E. 1957. A Treatise on Limnology. I. Geography, Physics, and Chemistry. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Ingram, H. A. P. 1983. Hydrology. p. 67–158. In A. J. P. Gore (ed.) Ecosystems of the World 4A: Mires, Swamp, Bog, Fen and Moor. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Kadlec, R. H., R. B. Williams, and R. D. Scheffe. 1988. Wetland evapotranspiration in temperate and arid climates. p. 146–60. In D. D. Hook, W. H. McKee, Jr., H. K. Smith, J. Gregory, V. G. Burrell, M. R. DeVoe, R. E. Sojka, S. Gilbert, R. Banks, L. G. Stolzy, C. Brooks, T. D. Matthews, and T. H. Shear (eds.) The Ecology and Management of Wetlands. Timber Press, Portland, OR, USA.

    Google Scholar 

  • Kantrud, J. A., G. L. Krapu, and G. A. Swanson. 1989. Prairie basin wetlands of the Dakotas: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 85(7.28).

    Google Scholar 

  • LaBaugh, J. W., T. C. Winter, V. A. Adomaitis, and G. A. Swanson. 1987. Hydrology and chemistry of selected prairie wetlands in the Cottonwood Lake area, Stutsman County, North Dakota, 1979–82. United States Printing Office, Washington, DC, USA. U.S Geological Survey Professional Paper 1431.

    Google Scholar 

  • LaBaugh, J. W., T. C. Winter, and D. O. Rosenberry. 1998. Hydrologic functions of prairie wetlands. Great Plains Research 8: 17–38.

    Google Scholar 

  • Leibowitz, S. G. and K. C. Vining. 2003. Temporal connectivity in a prairie pothole complex. Wetlands 23: 13–25.

    Article  Google Scholar 

  • Lesica, P. 1994. The distribution of plant community diversity associated with glacial wetlands in the Ovando Valley, Montana. Unpublished report on file with The Nature Conservancy, 32 S. Ewing, Helena, MT, USA.

  • Linacre, E. T. 1976. Swamps. p. 329–47. In J. L. Monteith (ed.) Vegetation and the Atmosphere, Volume 2, Case Studies. Academic Press, New York, NY, USA.

    Google Scholar 

  • MacArthur, R. H. 1958. Population ecology of some warblers of northeastern coniferous forest. Ecology 39: 599–619.

    Article  Google Scholar 

  • MacArthur, R. H. and J. W. MacArthur. 1961. On bird species diversity. Ecology 42: 594–98.

    Article  Google Scholar 

  • Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • MNHP [Montana Natural Heritage Program]. 2001. http://orion2.nris.state.mt.us/mtnhp/plants/index.html

  • Mudge, M. R., R. L. Earhart, J. W. Whipple, and J. E. Harrison. 1982. Geologic and structure map of the Choteau 1 × 2 quadrangle, western Montana. U.S. Geological Survey, Department of the Interior, Washington, DC, USA. Map I-1300, Misc. Invest. Series.

    Google Scholar 

  • Naiman, R. J. and H. Decamps. 1990. Aquatic-terrestrial ecotones: summary and recommendations. p. 295–303. In R. J. Naiman and H. Decamps (eds.) The Ecology and Management of Aquatic-terrestrial Ecotones. Man and the Biosphere Series, Volume 4. UNESCO, Parthenon Publishing, Park Ridge, NJ, USA.

    Google Scholar 

  • National Academy of Sciences. 2001. Compensating for Wetland Losses Under the Clean Water Act. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • Pielou, E. C. 1969. An Introduction to Mathematical Ecology. John Wiley and Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Richardson, J. L., J. L. Arndt, and J. Freeland. 1994. Wetland soils of the prairie potholes. Advances in Agronomy 52: 121–71.

    Article  CAS  Google Scholar 

  • Richardson, J. L., L. P. Wilding, and R. B. Daniels. 1992. Recharge and discharge of groundwater in aquic conditions illustrated with flownet analysis. Geoderma 53: 65–78.

    Article  Google Scholar 

  • Rosenberry, D. O. and T. C. Winter. 1997. Dynamics of watertable fluctuations in an upland between two prairie pothole wetlands in North Dakota. Journal of Hydrology 191: 266–89.

    Article  Google Scholar 

  • Shjeflo, J. B. 1968. Evapotranspiration and the water budget of prairie potholes in North Dakota. U.S. Geological Survey, Washington, DC, USA. Prof. Paper. 585-B.

    Google Scholar 

  • Sloan, C. E. 1972. Ground-water hydrology of prairie potholes in North Dakota. U.S. Geological Survey, Washington, DC, USA. Professional Paper 585-C.

    Google Scholar 

  • Smith, R. D., A. Amman, C. Bartoldus, and M. M. Brinson. 1995. An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional indices. U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS, USA. Wetland Research Program Technical Report, WRP-DE-9.

    Google Scholar 

  • Soil Conservation Service. 1995. Soil survey of Powell County area, Montana. U.S. Department of Agriculture, Washington, DC, USA. Interim Manuscript, Part 1.

    Google Scholar 

  • Soil Survey Division Staff. 1993. Soil survey manual. U.S. Department of Agriculture, Washington, DC, USA. Handbook No. 18.

    Google Scholar 

  • Stewart, R. E. and H. A. Kantrud. 1971. Classification of natural ponds and lakes in the glaciated prairie region. U.S. Fish and Wildlife Service, Washington, DC, USA. Res. Pub. 92.

    Google Scholar 

  • Stewart, R. E. and H. A. Kantrud. 1972. Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors. U.S. Geological Survey, Washington, DC, USA. Survey Prof. Paper 585-D.

    Google Scholar 

  • Stolte, W. J., S. L. Barbour, and R. G. Eilers. 1992. A study of the mechanisms influencing salinity development around prairie sloughs. Transactions of the American Society of Agricultural Engineers 35: 795–800.

    Google Scholar 

  • Swanson, G. A., T. C. Winter, V. A. Adomaitis, and J. W. LaBaugh. 1988. Chemical characteristics of prairie lakes in south-central North Dakota: their potential of influencing use by fish and wildlife. U.S. Fish and Wildlife Service, Washington, DC, USA. Technical Report 18.

    Google Scholar 

  • Tilman, D. 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338–48.

    Article  CAS  Google Scholar 

  • Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • van Breeman, N. 1988. Long-term chemical, mineralogical, and morphological effects of iron-redox processes in periodically flooded soils. p. 811–23. In J. W. Stucki, B. A. Goodman, and U. Schwertman (eds.) Iron in Soils and Clay Minerals. NATO: Dordrecht Publishing, Bad Windsheim, Germany.

    Google Scholar 

  • van der Kamp, G. and M. Hayashi. 1998. The groundwater recharge function of small wetlands in the semi-arid Northern Prairies. Great Plains Research 8: 39–56.

    Google Scholar 

  • van der Valk, A. G. 1981. Succession in wetland: a Gleasonian approach. Ecology 62: 688–96.

    Article  Google Scholar 

  • van der Valk, A. G. and C. B. Davis. 1978. The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–35.

    Article  Google Scholar 

  • Wetzel, R. G. 1975. Limnology. W.B. Saunders Co., Philadelphia, PA, USA.

    Google Scholar 

  • Wetzel, R. G. 1983. Limnology, second edition. W.B. Saunders Co., Philadelphia, PA, USA.

    Google Scholar 

  • Winter, T. C. 1989. Hydrologic studies of wetlands in the Northern Prairie. p. 16–54. In A. G. van der Valk (ed.) Northern Prairie Wetlands. Iowa State University Press, Ames, IA, USA.

    Google Scholar 

  • Winter, T. C. 2001. The concept of hydrologic landscapes. Journal of the American Water Resources Association 37: 335–49.

    Article  Google Scholar 

  • Winter, T. C., R. C. Benson, R. A. Engberg, G. J. Wiche, D. G. Emerson, O. A. Crosby, and J. E. Miller. 1984. Synopsis of ground-water and surface-water resources of North Dakota. U.S. Geological Survey, Washington, DC, USA. Water Resources Investigations Report 80-99.

    Google Scholar 

  • Winter, T. C. and D. O. Rosenberry. 1995. The interaction of ground water with prairie pothole wetlands in the Cottonwood Lake area, east-central North Dakota, 1979–1990. Wetlands 15: 193–211.

    Article  Google Scholar 

  • Winter, T. C. and M. K. Woo. 1990. Hydrology of lakes and wetlands. p. 159–87. In M. G. Wolmon and H. C. Riggs (eds.) Surface Water Hydrology. Geological Society of America, Boulder, CO, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cook, B.J., Hauer, F.R. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands 27, 719–738 (2007). https://doi.org/10.1672/0277-5212(2007)27[719:EOHCOW]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2007)27[719:EOHCOW]2.0.CO;2

Key Words

Navigation