Skip to main content
Log in

Comparative ecophysiology of four wetland plant species along a continuum of invasiveness

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We compared the ecophysiological performance of four dominant, perennial plant species of tidal marshes of northeastern North America (Phragmites australis, Typha angustifolia, Spartina alterniflora, andLeersia oryzoides), asking whether species that fall along a continuum of invasiveness vary consistently in terms of primary productivity, growth, biomass allocation, phenology, maximal photosynthetic rate, leaf turnover, tissue nutrient and chlorophyll content, and water use. During 1999, we examined plants growing at two brackish marshes and two freshwater tidal marshes in southern Connecticut, USA.Phragmites andTypha consistently exceeded the other two species in both marsh types in terms of ramet biomass, standing crop, length of the growing season, standing leaf area, leaf longevity, and total chlorophyll.Typha, Phragmites, andSpartina showed similar maximal photosynthetic rates across marsh types, significantly greater than the Pmax observed inLeersia. Foliar nitrogen, was significantly greater inPhragmites than in all other species, suggesting that this species accrues nutrients more efficiently.Phragmites andTypha populations did not differ in a number of characters between freshwater and brackish marshes, indicating low sensitivity to exposure to moderate salinity levels. A principle components analysis placedPhragmites andTypha close to each other and more distant fromSpartina andLeersia along axes describing components of competitive ability and photosynthetic performance. Thus, moderately and highly invasive species are distinct from less invasive species in terms of ecophysiology in both wetland types. AsPhragmites australis andTypha angustifolia displace other plant species in marshes, they will likely influence the carbon- and nitrogen-cycling functions of wetlands, subject to the species' varying tolerances for salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Allirand J.-M. and G. Gosse. 1995. An above-ground biomass production model for a common reed (Phragmites communis Trin.) stand. Biomass and Bioenergy 9:441–448.

    Article  Google Scholar 

  • Amsberry, L., M. A. Baker, P. J. Ewanchuk, and M. D. Bertness. 2000. Clonal integration and the expansion ofPhragmites australis. Ecological Applications 10:1110–1118.

    Article  Google Scholar 

  • Antonielli M., S. Pasqualini, P. Batini, L. Ederli, A. Massacci, and F. Loreto. 2002. Physiological and anatomical characterisation ofPhragmites australis leaves. Aquatic Botany 72:55–66.

    Article  Google Scholar 

  • Apfelbaum, S. I. 1985. Cattail (Typha spp.) management. Natural Areas Journal 5:9–17.

    Google Scholar 

  • Barrett, N. E. 1994. Vegetation patch dynamics in freshwater tidal wetlands. Ph.D. Dissertation. University of Connecticut, Storrs, CT, USA.

    Google Scholar 

  • Beerling, D. J., B. Huntley, and J. P. Bailey. 1995. Climate and the distribution ofFallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. Journal of Vegetation Science 6:269–282.

    Article  Google Scholar 

  • Bertness, M. D., P. J. Ewanchuk, and B. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences 99:1395–1398.

    Article  CAS  Google Scholar 

  • Bibby, C. J. and J. Lunn. 1982. Conservation of reed beds and the avifauna in England and Wales. Biological Conservation 23:167–187.

    Article  Google Scholar 

  • Björk, S. 1967. Ecologic investigations ofPhragmites communis: studies in theoretic and applied limnology. Folia Limnologica Scandinavia 14:1–248.

    Google Scholar 

  • Blossey, B. 2002.Phragmites australis: Common Reed. Morphological differences between native and introduced genotypes. Available at: http://www.invasiveplants.net/phragmites/phrag/ morph.htm (accessed December 2002).

  • Boar, R. R., C. E. Crook, and B. Moss. 1989. Regression ofPhragmites australis reedswamps and recent changes of water chemistry in the Norfolk Broadland, England. Aquatic Botany 35:41–55.

    Article  CAS  Google Scholar 

  • Boland, W. and C. J. Burk. 1992. Some effects of acidic growing conditions on three emergent macrophytes:Zizania aquatica, Leersia oryzoides, andPeltandra virginica. Environmental Pollution 76:211–217.

    Article  CAS  PubMed  Google Scholar 

  • Brix, H., B. K. Sorrell, and B. Lorenzen. 2001. ArePhragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquatic Botany 69:313–324.

    Article  CAS  Google Scholar 

  • Burdick, D. M., R. Buchsbaum, and E. Holt. 2001. Variation in soil salinity associated with expansion ofPhragmites australis in salt marshes. Environmental and Experimental Botany 46:247–261.

    Article  CAS  Google Scholar 

  • Callaway, J. C. and M. N. Josselyn. 1992. The introduction and spread of smooth cordgrass (Spartina alterniflora) in San Francisco Bay. Estuaries 15:218–226.

    Article  Google Scholar 

  • Chambers, R. M., T. J. Mozdzer and J. C. Ambrose. 1998. Effects of salinity and sulfide on the distribution ofPhragmites australis andSpartina alterniflora in a tidal saltmarsh. Aquatic Botany 62: 161–169.

    Article  CAS  Google Scholar 

  • Chambers, R. M., L. A. Meyerson, and K. Saltonstall. 1999. Expansion ofPhragmites australis into tidal wetlands of North America. Aquatic Botany 64:261–273.

    Article  Google Scholar 

  • Connecticut Department of Environmental Protection. 2002. Connecticut River Estuary and Tidal river wetlands complex. 4. Site description. Available at: http://www.dep.state.ct.us/olisp/ramsar/ sitedes2.htm#E.

  • Crawford, R. M. M. and R. Braendle. 1996. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany 47:145–159.

    Article  CAS  Google Scholar 

  • Dukes, J. S. and H. A. Mooney. 1999. Does global change increase the success of biological invaders? Trends in Ecology and Evolution 14:135–139.

    Article  PubMed  Google Scholar 

  • Emery, S. L. and J. A. Perry. 1995. Aboveground biomass and phosphorus concentrations ofLythrum salicaria (Purple Loosestrife) andTypha sp.. (Cattail) in 12 Minnesota wetlands. American Midland Naturalist 134:394–399.

    Article  Google Scholar 

  • Farnsworth, E. J. and L. A. Meyerson. 1999. Species composition and inter-annual dynamics of a freshwater tidal plant community following removal of the invasive grass,Phragmites australis. Biological Invasions 1:115–127.

    Article  Google Scholar 

  • Farnsworth, E. J. and D. R. Ellis. 2001. Is purple loosestrife (Lythrum salicaria) an invasive threat to freshwater wetlands? Conflicting evidence from several ecological metrics. Wetlands 21:199–209.

    Article  Google Scholar 

  • Findlay, S. E. G., S. Dye, and K. A. Kuehn. 2002. Microbial growth and nitrogen retention in litter ofPhragmites australis compared toTypha angustifolia. Wetlands 22:616–625.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755.

    Article  Google Scholar 

  • Gallagher, J. L., G. F. Somers, D. M. Grant, and D. M. Seliskar. 1988. Persistent differences in two forms ofSpartina alterniflora: a common garden experiment. Ecology 69:1005–1008.

    Article  Google Scholar 

  • Gaudet, C. L. and P. A. Keddy. 1995. Competitive performance and species distribution in shoreline plant communities: a comparative approach. Ecology 76:280–291.

    Article  Google Scholar 

  • Gaudet, C. L. and P. A. Keddy. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243.

    Article  Google Scholar 

  • Gross, M. F., M. A. Hardisky, P. L. Wolf, and V. Klemas. 1993. Relationships amongTypha biomass, pore water methane, and reflectance in a Delaware (U.S.A.) brackish marsh. Journal of Coastal Research 9:339–355.

    Google Scholar 

  • Hanganu, J., G. Mihail, and H. Coops. 1999. Responses of ecotypes ofPhragmites australis to increased seawater influence: a field study in the Danube Delta, Romania. Aquatic Botany 64:351–358.

    Article  Google Scholar 

  • Harrington, R. A., B. J. Brown, and P. B. Reich. 1989a. Ecophysiology of exotic and native shrubs in southern Wisconsin. I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. Oecologia 80:356–367.

    Article  Google Scholar 

  • Harrington, R. A., B. J. Brown, P. B. Reich, and J. H. Fownes. 1989b. Ecophysiology of exotic and native shrubs in southern Wisconsin. II. Annual growth and carbon gain. Oecologia 80:368–373.

    Article  Google Scholar 

  • Hayden, A. 1919. The ecologic foliar anatomy of some plants of a prairie province in central Iowa. American Journal of Botany 6: 69–85.

    Article  Google Scholar 

  • Hellings, S. E. and J. L. Gallagher. 1992. The effects of salinity and flooding onPhragmites australis. Journal of Applied Ecology 29: 41–49.

    Article  Google Scholar 

  • Huenneke, L. F. 1997. Outlook for plant invasions: interactions with other agents of global change. p. 95–103.In J. O. Luken and J. W. Thieret (eds.) Assessment and Management of Plant Invasions. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Kaki, T., A. Ojala, and P. Kankaala. 2001. Diel variation in methane emissions from stands ofPhragmites australis (Trin.) ex Steud. andTypha latifolia L. in a boreal lake. Aquatic Botany 71:259–271.

    Article  CAS  Google Scholar 

  • Linthurst, R. A. and R. J. Reimold. 1978. Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59:945–955.

    Article  Google Scholar 

  • Lissner, J., H.-H. Schierup, F. A. Comin, and V. Astorga. 1999a. Effect of climate on the salt tolerance of twoPhragmites australis populations. I. Growth, inorganic solutes, nitrogen relations, and osmoregulation. Aquatic Botany 64:317–333.

    Article  CAS  Google Scholar 

  • Lissner, J., H.-H. Schierup, F. A. Comin, and V. Astorga. 1999b. Effect of climate on the salt tolerance of twoPhragmites australis populations. II. Diurnal CO2 exchange and transpiration. Aquatic Botany 64:335–350.

    Article  CAS  Google Scholar 

  • Mason, C. F. and R. J. Bryant. 1975. Production, nutrient content and decomposition ofPhragmites communis Trin. andTypha angustifolia L. Journal of Ecology 63:71–95.

    Article  CAS  Google Scholar 

  • Matamala, R. and B. G. Drake. 1999. The influence of atmospheric CO2 enrichment on plant-soil nitrogen interactions in a wetland plant community on the Chesapeake Bay. Plant and Soil 210:93–101.

    Article  CAS  Google Scholar 

  • Matoh, T., N. Matsishita, and E. Takahashi. 1988. Salt tolerance of the reed plantPhragmites communis. Physiologia Plantarum 72: 8–14.

    Article  Google Scholar 

  • McCune, B. and M. J. Mefford. 1999. Multivariato Analysis Ecological Data. Version 4.0. MjM Software, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • McNaughton, S. J. 1966. Ecotype function in theTypha community-type. Ecological Monographs 36:297–325.

    Article  Google Scholar 

  • Menges, E. S. and D. M. Waller. 1983. Plant strategies in relation to elevation and light in floodplain herbs. American Naturalist 122:454–473.

    Article  Google Scholar 

  • Meyerson, L. A. 2000. Ecosystem-level effects of invasive species: aPhragmites case study in two freshwater tidal marsh ecosystems on the Connecticut River. Ph.D. Dissertation. Yale University, New Haven, CT, USA.

    Google Scholar 

  • Meyerson, L. A., K. Saltonstall, L. Windham, E. Kiviat, and S. Findlay. 2000. A comparison ofPhragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8:89–103.

    Article  CAS  Google Scholar 

  • Milton, S. J. 1981. Litterfall of the exotic acacias in the south western Cape. Journal of South African Botany 47:147–155.

    Google Scholar 

  • Morton, J. F. 1975. Cattails (Typha spp.): weed problem or potential crop? Economic Botany 29:7–29.

    Google Scholar 

  • Moyle, J. B. 1945. Some chemical factors influencing the distribution of aquatic plants in Minnesota. American Midland Naturalist 34:402–420.

    Article  CAS  Google Scholar 

  • Nagel, J. M. and K. L. Griffin. 2001. Construction cost and invasive potential: comparingLythrum salicaria (Lythraceae) and co-occurring native species along pond banks. American Journal of Botany 88:2252–2258.

    Article  Google Scholar 

  • Niering, W. A., R. S. Warren, and C. Weymouth. 1977. Our dynamic tidal marshes: vegetation changes as revealed by peat analysis. Connecticut Arboretum, New London, CT, USA, Bulletin No. 22.

    Google Scholar 

  • Orson, R. A. 1999. A paleoecological assessment ofPhragmites australis in New England tidal, marshes: changes in plant community structure during the last few millennia. Biological Invasions 1:149–158.

    Article  Google Scholar 

  • Otto, S., P. M. Groffman, S. E. G. Findlay, and A. E. Arreola. 1999. Invasive plant species and micribial processes in a tidal fresh-water marsh. Journal of Environmental Quality 28:1252–1257.

    CAS  Google Scholar 

  • Pattison, R. R., G. Goldstein, and A. Ares. 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117:449–459.

    Article  Google Scholar 

  • Porra, R. J., W. A. Thompson, and P. E. Kriedemann. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyllsa andb extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta 975:384–394.

    Article  CAS  Google Scholar 

  • Prisloe, S. and N. E. Barrett. 1998. Spatial patterns of expansion by Phragmites australis (Cav.) Trin. ex Steud. within the tidelands of the Connecticut River from 1968 to 1994. Report to The Nature Conservancy, Middletown, CT, USA.

  • Rice, D., J. Rooth, and J. C. Stevenson. 2000. Colonization and expansion ofPhragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280–299.

    Article  Google Scholar 

  • Richardson, D. M., P. Pysek, M. Rejmanek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization of alien plants: concepts and definition. Diversity and Distributions 6:93–107.

    Article  Google Scholar 

  • Richburg, J. A., W. A. Patterson III, and F. Lowenstein. 2001. Effects of road salt andPhragmites australis invasion on the vegetation of a western Massachusetts calcareous lake-basin fen, Wetlands 21:247–255.

    Article  Google Scholar 

  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed,Phragmites australis, into North America. Proceedings of the National Academy of Sciences 99:2445–2449.

    Article  CAS  Google Scholar 

  • Sasek, T. W. and B. R. Strain. 1988. Effects of carbon dioxide enrichment on the growth and morphology of kudzu (Pueraria lobata). Weed Science 36:28–36.

    Google Scholar 

  • Sasek, T. W. and B. R. Strain. 1991. Effects of CO2 enrichment on the growth and morphology of a, native and an introduced honeysuckle vine. American Journal of Botany 78:69–75.

    Article  CAS  Google Scholar 

  • Smith, S. D., B. R. Strain, and T. D. Sharkey. 1987. Effects of carbon dioxide enrichment on four Great Basin (USA) grasses. Functional Ecology 1:139–144.

    Article  Google Scholar 

  • Sokal, R. R. and F. J. Rohlf. 1981. Biometry: the Principles and Practice of Statistics in Biological Research. Second Edition. W. H. Freeman and Company. New York, NY, USA.

    Google Scholar 

  • SPSS, Inc. 1998. SYSTAT 8.0 Statistics. SPSS Inc., Chicago, Illinois, USA.

    Google Scholar 

  • Stalter, R. and J. Baden 1994. A twenty-year comparison of three abandoned rice fields Georgetown County, South Carolina. Castanea 59:69–77.

    Google Scholar 

  • USDA, NRCS. 2002. The PLANTS Database, Version 3.5 (http:// plants.usda.gov). National Plant Data Center, Baton Rouge, LA 70874-4490 USA.

    Google Scholar 

  • Wijte, A. H. B. M. and J. L. Gallagher. 1996. Effect of oxygen availability and salinity on early life history stages of salt marsh plants. I. Different germination strategies ofSpartina alterniflora andPhragmites australis (Poaceae). American Journal of Botany 83:1337–1342.

    Article  Google Scholar 

  • Wilcox, D. A. 1986. The effects of deicing salts on vegetation in Pinehook Bog, Indiana. Canadian Journal of Botany 64:865–874.

    Article  CAS  Google Scholar 

  • Windham, L. 1999. Microscale spatial distribution ofPhragmites australis (common reed) invasion intoSpartina patens (salt hay)-dominated communities in brackish tidal marsh. Biological Invasions 1:137–148.

    Article  Google Scholar 

  • Windham, L. 2001. Comparison of biomass production and decomposition betweenPhragmites australis (common reed) andSpartina patens (salt hay grass) in brackish tidal marshes of New Jersey, USA. Wetlands 21:179–188.

    Article  Google Scholar 

  • Zheng, A. U., W. J. Zheng, and C. L. Zhang. 2000. A survey of photosynthetic carbon metabolism in four ecotypes ofPhragmites australis in northwest China: Leaf anatomy, ultrastructure, and activities of ribulose 1, 5-bisphosphate carbozylase and glycolate oxidase. Physiologia Plantarum 110:201–208.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnsworth, E.J., Meyerson, L.A. Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands 23, 750–762 (2003). https://doi.org/10.1672/0277-5212(2003)023[0750:CEOFWP]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2003)023[0750:CEOFWP]2.0.CO;2

Key Words

Navigation