Skip to main content
Log in

Salicornia virginica in a southern California salt marsh: Seasonal patterns and a nutrient-enrichment experiment

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Salicornia virginica (common pickleweed) is the dominant vascular plant of many saline marshes of the US west coast, yet little is known about seasonal patterns or abiotic factors controlling it. In a southern California salt marsh, quarterly sampling revealed strong seasonal trends, with 2x greater S. virginica biomass in summer than in winter. Tissue nitrogen (N) and phosphorus (P) concentrations were highest in winter and lower in spring and summer, suggesting a dilution of nutrients as plants accumulated biomass during the growing season. Despite high sediment nutrient levels in this marsh, an experiment examining N and P effects still found strong S. virginica responses to N applied biweekly for > 1 year. Increases in succulent tissue biomass after N addition were first seen in April 1998 (after fertilization for 11 months); two-fold increases in biomass and the number of branches resulted by the end of the experiment in August 1998. Addition of N increased N concentration in the woody tissues when sampled in August. The N:P ratio increased with N addition beginning in winter (7 months after fertilization began) and continuing through the remainder of the experiment. Effects of P addition were less marked, as adding P did not result in biomass responses; however, it did influence tissue nutrient levels. These amendments increased P concentrations in the woody tissue in August 1998. In contrast to N amendments, which did not affect root nutrient concentrations, P addition led to increases in P content of root tissues in the latter portion of the growing season. These data suggest that increases in nutrients (especially N, but also P) can lead to large changes in S. virginica characteristics even in estuaries with high sediment nutrient levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Atkinson, M. J., and S. V. Smith. 1983. C:N:P ratios of benthic marine plants. Limnology and Oceanography 28:568–574.

    Article  CAS  Google Scholar 

  • Berger, J. J. 1990. Ecological Restoration in the San Francisco Bay Area. Restoring the Earth, San Francisco, CA, USA.

    Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8:692–705.

    Article  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh. Restoration Ecology 7:74–85.

    Article  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology 7:282–287.

    Article  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1991. The influence of salinity on the kinetics of NH4 + uptake in Spartina alterniflora. Oecologia 83:375–380.

    Article  Google Scholar 

  • Bradley, P. M. and J. T. Morris. 1992. Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel. Aquatic Botany 43:149–161.

    Article  Google Scholar 

  • Broome, S. W., W. W. Woodhouse, and E. D. Seneca. 1975. The relationship of mineral nutrients to growth of Spartina alterniflora in North Carolina. II. The effects of N, P, and Fe fertilizers. Soil Science Society of America Proceedings 39:301–307.

    CAS  Google Scholar 

  • Buresh, R. J., R. D. DeLaune, and W. H. Patrick, Jr. 1980. Nitrogen and phosphorus distribution and utilization by Spartina alterniflora in a Lousiana gulf coast marsh. Estuaries 3:111–121.

    Article  Google Scholar 

  • Callaway, J. C., J. B. Zedler, and D. L. Ross. 1997. Using tidal salt marsh mesocosms to aid wetland restoration. Restoration Ecology 5:135–146.

    Article  Google Scholar 

  • Callaway, R. M. and S. C. Pennings. 1998. Impact of a parasitic plant on the zonation of two salt marsh perennials. Oecologia 114: 100–105.

    Article  Google Scholar 

  • Cavalieri, A. J. and A. H. C. Huang. 1979. Evaluation of proline accumulation in the adaptation of diverse species of marsh halophytes to the saline environment. American Journal of Botany 66: 307–312.

    Article  CAS  Google Scholar 

  • Cavalieri, A. J. and A. H. C. Huang. 1981. Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel in response to NaCl and nitrogen in the marsh. Oecologia 49:224–228.

    Article  Google Scholar 

  • Chalmers, A. G. 1979. The effects of fertilization on nitrogen distribution in a Spartina alterniflora salt marsh. Estuarine and Coastal Marine Science 8:327–337.

    Article  CAS  Google Scholar 

  • Covin, J. D. and J. B. Zedler. 1988. Nitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana Estuary, California. Wetlands 8:51–65.

    Google Scholar 

  • Craft, C., J. Reader, J. N. Sacco, and S. W. Broome. 1999. Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshes. Ecological Applications 9:1405–1419.

    Article  Google Scholar 

  • de la Cruz, A. A., D. T. Hackney, and J. P. Stout. 1981. Above-ground net primary productivity of three Gulf coast marsh macrophytes in artificially fertilized plots. p. 437–446. In B. J. Neilson and L. E. Cronin (eds.) Estuaries and Nutrients. Proceedings from the International Conference on the Effects of Nutrient Enrichment in Estuaries, Williamsburg, Virginia. Humana Press, Clifton, NJ, USA.

    Google Scholar 

  • DeLaune, R. D. and S. R. Pezeshki. 1988. Relationship of mineral nutrients to growth of Spartina alterniflora in Louisiana salt marshes. Northeast Gulf Science 10:55–60.

    Google Scholar 

  • Dai, T. and R. G. Wiegert. 1996. Ramet population dynamics and net aerial productivity of Spartina alterniflora. Ecology 77:276–288.

    Article  Google Scholar 

  • Ellison, A. M., M. D. Bertness, and T. Miller. 1986. Seasonal patterns in the belowground biomass of Spartina alterniflora (Graminae) across a tidal gradient. American Journal of Botany 73: 1548–1554.

    Article  Google Scholar 

  • Eyre, B. and P. Balls. 1999. A comparative study of nutrient behavior along the salinity gradient of tropical and temperate estuaries. Estuaries 22:313–326.

    Article  CAS  Google Scholar 

  • Fahn, A. and T. Arzee. 1959. Vascularization of articulated Chenopodiaceae and the nature of their flesh cortex. American Journal of Botany 46:330–338.

    Article  Google Scholar 

  • Gallagher, J. L. 1975. Effect of an ammonium nitrate pulse on the growth and elemental composition of natural stands of Spartina alterniflora and Juncus roemerianus. American Journal of Botany 62:644–648.

    Article  CAS  Google Scholar 

  • Gibson, K. D., J. B. Zedler, and R. Langis. 1994. Limited response of cordgrass (Spartina foliosa) to soil amendments in a constructed marsh. Ecological Applications 4:757–767.

    Article  Google Scholar 

  • Haines, B. L. and E. L. Dunn. 1976. Growth and resource allocation responses of Spartina alterniflora Loisel. to three levels of NH4-N, Fe, and NaCl in solution culture. Botanical Gazette 137:224–230.

    Article  CAS  Google Scholar 

  • Haines, E. B. 1979. Growth dynamics of cordgrass, Spartina alterniflora Loisel., on control and sewage sludge fertilized plots in a Georgia salt marsh. Estuaries 2:50–53.

    Article  CAS  Google Scholar 

  • Haltiner, J., J. B. Zedler, K. E. Boyer, G. D. Williams, and J. C. Callaway. 1997. Influence of physical processes on the design, functioning and evolution of restored tidal wetlands in California (USA). Wetlands Ecology and Management 4:73–91.

    Article  Google Scholar 

  • Howes, B. L., R. W. Howarth, J. M. Teal, and I. Valiela. 1981. Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production. Limnology and Oceanography 26:350–360.

    Article  Google Scholar 

  • Kennedy, K. A. and V. C. Brink. 1986. Differences in standing live and dead crops in estuarine marshes on Vancouver Island. Canadian Journal of Botany 64:322–325.

    Article  Google Scholar 

  • Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35:399–408.

    Article  CAS  Google Scholar 

  • Kwak, T. J. and J. B. Zedler. 1997. Food web analysis of southern California coastal wetlands using multiple stable isotopes. Oecologia 110:262–277.

    Article  Google Scholar 

  • Langis, R., M. Zalejko, and J. B. Zedler. 1991. Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay, California. Ecological Applications 1:40–51.

    Article  Google Scholar 

  • Lindau, C. W. and L. R. Hossner. 1981. Substrate characterization of an experimental marsh and three natural marshes. Soil Science Society of America Journal 45:1171–1176.

    Article  CAS  Google Scholar 

  • Macdonald, K. B. and M. G. Barbour. 1974. Beach and salt marsh vegetation of the North American Pacific coast. p. 175–234. In R. J. Reimold and W. H. Queen (eds.) Ecology of Halophytes. Academic Press, New York, NY, USA.

    Google Scholar 

  • Mahall, B. E. and R. B. Park. 1976. the ecotone between Spartinafoliosa Trin. and Salicornia virginica L. in salt marshes of northern San Francisco Bay. I. Biomass and production. Journal of Ecology 64:421–433.

    Article  Google Scholar 

  • Matthews, G. A. and T. J. Minello. 1994. Technology and success in restoration, creation and enhancement of Spartina alterniflora marshes in the United States. Vol. 1—Executive Summary and Annotated Bibliography. NOAA Coastal Ocean Office, Silver Spring, MD, USA. NOAA Coastal Ocean Program Decision Analysis Series No. 2.

    Google Scholar 

  • Mendelssohn, I. A. and K. L. Marcellus. 1976. Angiosperm production of three Virginia marshes in various salinity and soil nutrient regimes. Chesapeake Science 17:15–23.

    Article  CAS  Google Scholar 

  • National Academy of Sciences. 1994. Priorities for Coastal Science. National Academy Press, Washington, DC, USA.

    Google Scholar 

  • Nixon, S. W., C. A. Oviatt, J. Frithsen, and B. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems. Journal of the Limnological Society of Southern Africa 12:43–71.

    CAS  Google Scholar 

  • Nordby, C. S., J. B. Zedler, P. Williams and J. Boland. 1980. Coastal wetlands restoration and enhancement. U.S. Department of the Navy, Wildlife and Natural Resource Office, San Diego, CA. USA.

    Google Scholar 

  • Onuf, C. P. 1987. The ecology of Mugu Lagoon, California: an estuarine profile. U.S. Fish and Wildlife Service, Washington, DC, USA. Biological Report 85 (7.15).

    Google Scholar 

  • Osgood, D. T. and J. C. Zieman. 1993. Factors controlling above-ground Spartina alterniflora (smooth cordgrass) tissue element composition and production in different-age barrier island marshes. Estuaries 16:815–826.

    Article  CAS  Google Scholar 

  • Paerl, H. 1993. Emerging role of atmospheric nitrogen deposition in coastal eutrophication: biogeochemical and trophic perspectives. Canadian Journal of Fisheries and Aquatic Sciences 50:2254–2269.

    Article  CAS  Google Scholar 

  • Paerl, H. 1995. Coastal eutrophication in relation to atmospheric nitrogen deposition: current perspectives. Ophelia 41:237–259.

    Google Scholar 

  • Page, H. M. 1995. Variation in the natural abundance of 15N in the halophyte, Salicornia virginica, associated with groundwater subsidies of nitrogen in a southern California salt-marsh. Oecologia 104:181–188.

    Article  Google Scholar 

  • Page, H. M. 1997. Importance of vascular plant and algal production to macro-invertebrate consumers in a southern California salt marsh. Estuarine, Coastal and Shelf Science 45:823–834.

    Article  Google Scholar 

  • Patrick, W. H., Jr. and R. D. DeLaune. 1976. Nitrogen and phosphorus utilization by Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana. Estuarine and Coastal Marine Science 4:59–64.

    Article  CAS  Google Scholar 

  • Powell, A. N. 1993. Nesting habitat of Belding’s Savannah sparrows in coastal salt marshes. Wetlands 13:219–223.

    Article  Google Scholar 

  • Richards, L. A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture Handbook No. 60. US Department of Agriculture, Washington, DC, USA.

    Google Scholar 

  • Seliskar, D. M. 1985. Morphometric variations of five tidal marsh halophytes along environmental gradients. American Journal of Botany 72:1340–1352.

    Article  Google Scholar 

  • Seliskar, D. M. and J. L. Gallagher. 1983. The ecology of tidal marshes of the Pacific Northwest coast: a community profile. U.S. Fish and Wildlife Service, Division of Biological Services, Washington, DC, USA. FWS/OBS-82/32.

    Google Scholar 

  • Sfriso, A., B. Pavoni, A. Marcomini, and A. A. Orio. 1992. Macroalgae, nutrient cycles, and pollutants in the Lagoon of Venice. Estuaries 15:517–522.

    Article  CAS  Google Scholar 

  • Shaver, G. R. and J. M. Melillo. 1984. Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65:1491–1510.

    Article  Google Scholar 

  • Shea, M. L., R. S. Warren, and W. A. Niering. 1975. Biochemical and transplantation studies of the growth form of Spartina alterniflora on Connecticut salt marshes. Ecology 56:461–466.

    Article  CAS  Google Scholar 

  • Small, A. 1994. California Birds: Their Status and Distribution. Ibis Publishing Company, Vista, CA, USA.

    Google Scholar 

  • Sousa, W. P. 1993. Size-dependent predation on the salt-marsh snail Cerithidea californica Haldeman. Journal of Experimental Marine Biology and Ecology 166:19–37.

    Article  Google Scholar 

  • Sullivan, M. J. and F. C. Daiber. 1974. Response in production of cordgrass, Spartina alterniflora, to inorganic nitrogen and phosphorus fertilizer. Chesapeake Science 15:121–123.

    Article  Google Scholar 

  • Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Soil Fertility and Fertilizers, 4th edition. Macmillan Publishing Co. New York, NY, USA.

    Google Scholar 

  • Valiela, I. and J. M. Teal. 1974. Nutrient limitation in salt marsh vegetation. p. 547–563. In R. J. Reimold and W. H. Queen (eds.) Ecology of Halophytes. Academic Press, New York, NY, USA.

    Google Scholar 

  • Valiela, I., J. M. Teal, C. Cogswell, J. Hartman, S. Allen, R. Van Etten, and D. Goehringer. 1985. Some long-term consequences of sewage contamination in salt marsh ecosystems. p. 301–316. In P. J. Godfrey, E. R. Kaynor, S. Pelczarski, and J. Benforado (eds.) Ecological Considerations in Wetland Treatment of Municipal Wastewater. Van Nostrand Reinhold, New York, NY, USA.

    Google Scholar 

  • Wetzel, R. and S. Powers. 1978. Habitat development field investigation, Windmill Point marsh development site, James River, Virginia. U.S. Army Engineer Waterways Experiment Station. Vicksburg, MS, USA. Technical Report D-77-23.

    Google Scholar 

  • Wheeler, P. A. and B. R. Björnsäter. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N:P for five macroalgal species common to the Pacific Northwest coast. Journal of Phycology 28: 1–6.

    Article  CAS  Google Scholar 

  • Willason, S. W. 1981. Factors influencing the distribution and coexistence of Pachygrapsus crassipes and Hemigrapsus oregonensis (Decapoda:Grapsidae) in a California salt marsh. Marine Biology 64:125–133.

    Article  Google Scholar 

  • Zedler, J. B. 1982. The ecology of southern California coastal salt marshes: a community profile. U.S. Fish and Wildlife Service, Biological Services Program, Washington, DC, USA. FWS/OBS-81/54.

    Google Scholar 

  • Zedler, J. B., C. S. Nordby, and B. E. Kus. 1992. The ecology of Tijuana Estuary, California: a National Estuarine Research Reserve. NOAA Office of Coastal Resource Management, Sanctuaries and Reserves Division, Washington, DC, USA.

    Google Scholar 

  • Zedler, J. B. 1996. Coastal mitigation in southern California: the need for a regional restoration strategy. Ecological Applications 6:84–93.

    Article  Google Scholar 

  • Zhang, M., S. L. Ustin, E. Rejmankova, and E. W. Sanderson. 1997. Monitoring Pacific coast salt marshes using remote sensing. Ecological Applications 7:1039–1053.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyer, K.E., Fong, P., Vance, R.R. et al. Salicornia virginica in a southern California salt marsh: Seasonal patterns and a nutrient-enrichment experiment. Wetlands 21, 315–326 (2001). https://doi.org/10.1672/0277-5212(2001)021[0315:SVIASC]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2001)021[0315:SVIASC]2.0.CO;2

Key Words

Navigation