Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T14:49:17.025Z Has data issue: false hasContentIssue false

Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon Basin

Published online by Cambridge University Press:  20 May 2016

Carl David Frailey
Affiliation:
Department of Human Sciences, Johnson County Community College, 12345 College at Quivera Road, Overland Park, KS 66210-1299, USA Department of Vertebrate Paleontology, University of Kansas Museum of Natural History, Lawrence, KS 66045, USA,
Kenneth E. Campbell Jr.
Affiliation:
Vertebrate Zoology, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA,

Abstract

Two new, extinct taxa of peccaries from upper Miocene deposits of the western Amazon Basin provide the first data documenting the presence of these North American mammals in South America in the Miocene. One, Sylvochoerus woodburnei n. gen. n. sp., is allied morphologically to Tayassu pecari, whereas the second, Waldochoerus bassleri n. gen. n. sp., is more similar to Pecari tajacu. Both new taxa reflect an intermediate position between middle Miocene peccaries and modern Tayassu and Pecari. The specimens reported here were unstudied, but when collected they were referred to living species of Tayassu and Pecari based on their general similarity to species of those two living genera, and they were dated to the Pleistocene, presumably based on a long–standing model of the Great American Faunal Interchange. The presence of peccaries in South America at approximately the same time that South American ground sloths began appearing in upper Miocene deposits of North America, and soon after the appearance of gomphotheres in South America, indicates that dispersal between the Americas was earlier and involved more taxa than previously interpreted. Molecular divergence data are consistent, in part, with a late Miocene dispersal of peccaries to South America.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameghino, F. 1904. Neuvas especies de mamíferos cretáceos y terciarios de la República Argentina (continuación). Annals de la Sociedad Científica Argentina, 58:182192.Google Scholar
Campbell, K. E. Jr. In press. The Great American Faunal Interchange: The first phase. InRosenberger, A. L. and Tejedor, M. F.(eds.), Origins and Evolution of Cenozoic South American Mammals. Springer, New York.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Arellano-L, J. 1985. The geology of the Rio Beni: further evidence for Holocene flooding in Amazonia. Contributions in Science, Natural History Museum of Los Angeles County, 364:118.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Romero-Pittman, L. 2000. The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the Great American Faunal Interchange. Instituto Geológico Minero y Metalúrgico, Serie D: Estudios Regionales, Boletín, 23:1152.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Romero-Pittman, L. 2006. The Pan-Amazonian Ucayali Peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeography, Palaeoclimatology, Palaeoecology, 239:166219.Google Scholar
Campbell, K. E. Jr., Frailey, C. D., and Romero-Pittman, L. 2009. In defense of Amahuacatherium (Proboscidea: Gomphotheriidae). Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen, 252:113128.Google Scholar
Campbell, K. E. Jr., Prothero, D. R., Romero-Pittman, L., Hertel, F., and Rivera, N. 2010. Amazonian magnetostratigraphy: dating the first pulse of the Great American Faunal Interchange. Journal of South American Earth Sciences, 29:619626.Google Scholar
Campbell, K. E. Jr., Heizler, M., Frailey, C. D., Romero-Pittman, L., and Prothero, D. R. 2001. Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology, 29:595598.Google Scholar
Cope, E. D. 1867. An addition to the vertebrate fauna of the Miocene period, with a synopsis of the extinct Cetacea of the United States. Proceeding of the Academy of Natural Sciences, Philadelphia, 1867:138156.Google Scholar
Cope, E. D. 1869. The Artiodactyla. American Naturalist, 23:111136.Google Scholar
Duque-Caro, H. 1990a. The Choco Block in the northwestern corner of South America: structural, tectonostratigraphic, and paleogeographic implications. Journal of South American Earth Sciences, 3:7184.Google Scholar
Duque-Caro, H. 1990b. Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology, 77:203234.Google Scholar
Fischer, G. 1813–1814. Zoognosia Tabulis Synopticis Illustrata. Nicolai S. Vsevolozsky, Moscow, 732p.Google Scholar
Frailey, C. D. 1986. Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Rio Acre region, western Amazonia. Contributions in Science, Natural History Museum of Los Angeles County, 374:146.Google Scholar
Gasparini, G. M. 2011. Records and stratigraphical ranges of South American Tayassuidae (Mammalia, Artiodactyla). Journal of Mammalian Evolution, 24 September 2011:112. (Online only)Google Scholar
Gasparini, G. M. and Ferrero, B. S. 2009. The Tayassuidae (Mammalia, Artiodactyla) from the Quaternary of Entre Rios Province. A palaeofaunal review in Argentina. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen, 256:151160.Google Scholar
Gasparini, G. M., Kerber, L., and Oliveira, E. V. 2009. Catagonus stenocephalus (Lund in Reinhardt, 1880) (Mammalia, Tayassuidae) in the Touro Passo Formation (late Pleistocene), Rio Grande do Sul, Brazil. Taxonomic and palaeoenvironmental comments. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen, 254:261273.Google Scholar
Gasparini, G. M., Soibelzon, E., Zurita, A. E., and Miño–Boilini, A. R. 2010. A review of the Quaternary Tayassuidae (Mammalia, Artiodactyla) from the Tarija Valley, Bolivia. Alcheringa, 34:720.Google Scholar
Gidley, J. W. 1904. New or little known mammals from the Miocene of South Dakota; American Museum expedition of 1903. (By W. D. Matthew and J. W. Gidley. Part III, Dicotylidae, by J.W. Gidley.) Bulletin of the American Museum of Natural History, 20:241268.Google Scholar
Gongora, J. and Moran, C. 2005. Nuclear and mitochondrial evolutionary analyses of Collared, White-lipped, and Chacoan peccaries (Tayassuidae). Molecular Phylogenetics and Evolution, 34:181189.Google Scholar
Gongora, J., Morales, S., Bernal, J. E., and Moran, C. 2006. Phylogenetic divisions among collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Molecular Phylogenetics and Evolution, 41:111.Google Scholar
Gongora, J., Biondo, C., Cooper, J. D., Taber, A., Keuroghlian, A., Altrichter, M., Do Nascimento, F. F., Chong, A. Y., Miyaki, C. Y., Bodmer, R., Mayor, P., and González, S. 2011. Revisiting the species status of Pecari maximus van Roosmalen et al., 2007 (Mammalia) from the Brazilian Amazon. Bonn zoological Bulletin, 60:95101.Google Scholar
Kiltie, R. A. 1985. Craniomandibular differences between rain–forest and desert collared peccaries. American Midland Naturalist, 113:384387.Google Scholar
Kirby, M. X. and MacFadden, B. J. 2005. Was southern Central America an archipelago or a peninsula in the middle Miocene? A test using land–mammal body size. Palaeogeography, Palaeoclimatology, Palaeoecology, 228:193202.Google Scholar
Kraglievich, J. L. 1959. Rectificación acerca de las supestos molars humanos fósiles de Miramar (Prov. de Buenos Aires). Revista Instituto Antropología, 1:223236.Google Scholar
Kummel, B. 1948. Geological reconnaissance of the Contamana Region, Peru. Geological Society of America, Bulletin, 69:12171266.Google Scholar
LeConte, J. L. 1848. On Platygonus compressus: a new fossil pachyderm. Memoirs of the American Academy of Arts and Sciences, new series, 3:257274.Google Scholar
Link, D. H. F. 1795. Beiträge zur Naturgeschichte. Rostock und Leipzig, 2:1126.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna tria Naturae, secundum Classes, Ordines, Genera, Species cum Characteribus, Differentis, Synonymis, Locis. 10th edition. Laurentii Salvi, Stockholm, Sweden, 824p.Google Scholar
MacFadden, B. J. 2006. North American Miocene land mammals from Panama. Journal of Vertebrate Paleontology, 26:720734.Google Scholar
MacFadden, B. J., Kirby, M. X., Rincon, A., Montes, C., Moron, S., Strong, N., and Jaramillo, C. 2010. Extinct peccary “Cynorca” occidentale (Tayassuidae, Tayassuinae) from the Miocene of Panama and correlations to North America. Journal of Paleontology, 84:288298.CrossRefGoogle Scholar
Marsh, O. C. 1875. Notice of new Tertiary mammals. IV. American Journal of Science, serie 3, 9:239250.Google Scholar
Marshall, L. G. and Sempere, T. 1993. Evolution of the Neotropical Cenozoic land mammal fauna in its geochronologic, stratigraphic, and tectonic context, p. 329392. InGoldblatt, P.(ed.), Biological Relationships between Africa and South America. Yale University Press, New Haven.CrossRefGoogle Scholar
Mayer, J. J. and Wetzel, R. M. 1986. Catagonus wagneri. Mammalian Species, 259:15.CrossRefGoogle Scholar
Osborn, H. F. 1907. Evolution of Mammalian Molar Teeth to and from the Triangular Type. Biological Studies and Addresses, Volume I. Macmillan, New York, 250p.Google Scholar
Owen, R. 1848. Description of teeth and portions of two extinct anthracotheroid quadrupeds (Hyopotamus vectianus and H. bovines) discovered by the Marchioness of Hastings in the Eocene deposits on the N.W. coast of the Isle of Wight, with an attempt to develop Cuvier's idea of the classification of pachyderms by the number of their toes. Quarterly Journal of the Geological Society of London, 4:104141.Google Scholar
Palmer, T. S. 1897. Notes on the nomenclature of four genera of tropical American mammals. Proceeding of the Biological Society of Washington, 11:173174.Google Scholar
Prevosti, F. J., Gasparini, G. M., and Bond, M. 2006. On the systematic position of a specimen previously assigned to Carnivora from the Pliocene of Argentina and its implications for the Great American Biotic Interchange. Neues Jahrbuch für Geologie und Palaeontologie Abhandlungen, 242:133144.Google Scholar
Prothero, D. R. 2009. The early evolution of the North American peccaries (Artiodactyla: Tayassuidae). Museum of Northern Arizona Bulletin, 65:509541.Google Scholar
Reichenbach, A. B. 1835. Bildergalerie der Thierwelt. Heft 6. E. Pönicke and Sohn, Leipzig.Google Scholar
Romero-Pittman, L. 1996. Paleontología de Vertebrados. Instituto Geológico Minero y Metalúrgico, Carta Geológica Nacional, Boletín, Serie A, No. 81, 171178.Google Scholar
Rusconi, C. 1930. Las especies fósiles argentinas de peccaries (Tayassuidae) y sus relaciones con las del Brasil y Norte America. Anales del Museo Nacional de Historia Natural “Bernardino Rivadavia,” 36:121141.Google Scholar
Rusconi, C. 1948. Restos de platigonos y malformaciones óseas procedentes de los túmulos indígenas de Santiago del Estero. Revista del Museo de Historia Natural de Mendoza, 2:231239.Google Scholar
Simpson, G. G. and Paula Couto, de C. 1981. Fossil mammals from the Cenozoic of Acre, Brazil III—Pleistocene Edentata, Pilosa, Proboscidea, Sirenia, Perissodactyla and Artiodactyla. Iheringia, série Geologia, 6:1173.Google Scholar
Spillman, F. 1949. Contribución a la paleontología del Perú. Una mamifauna fósil de la región del río Ucayali. Publicaciones del Museo de Historia Natural “Javier Prado,” serie C, 1:140.Google Scholar
Stirton, R. A. 1947. A rodent and a peccary from the Cenozoic of Colombia. Compilación de estudios geológicos oficiales en Colombia, 7:317324.Google Scholar
Stock, C. 1937. A peccary skull from the Barstow Miocene of California. Proceedings of the National Academy of Sciences, 23:398404.Google Scholar
Theimer, T. C. and Keim, P. 1998. Phylogenetic relationships of peccaries based on mitochondrial cytochrome b DNA sequences. Journal of Mammalogy, 79:566572.Google Scholar
Van Roosmalen, M. G. M., Frenz, L., Van Hooft, P., Iongh, H. H. De, and Leirs, H. 2007. A new species of living peccary (Mammalia: Tayassuidae) from the Brazilian Amazon. Bonner Zoologische Beitrage, 55:105112.Google Scholar
Webb, S. D. and Perrigo, S. C. 1984. Late Cenozoic vertebrates from Honduras and El Salvador. Journal of Vertebrate Paleontology, 4:237254.Google Scholar
Whitmore, F. C. Jr. and Stewart, R. H. 1965. Miocene mammals and Central American seaways. Science, 148:180185.CrossRefGoogle ScholarPubMed
Willard, B. 1966. The Harvey Bassler Collection of Peruvian Fossils. Lehigh University, Bethlehem, Pennsylvania, 255p.Google Scholar
Wilson, D. E. and Reeder, D. M. 2005. Mammal Species of the World. Volume I. The Johns Hopkins University Press, Baltimore, 743p.Google Scholar
Woodburne, M. O. 1968. The cranial myology and osteology of Dicotyles tajacu, the collared peccary, and its bearing on classification. Memoirs of the Southern California Academy of Sciences, 7:148.Google Scholar
Woodburne, M. O. 1969. Systematics, biogeography, and evolution of Cynorca and Dyseohyus (Tayassuidae). Bulletin of the American Museum of Natural History, 141:273355.Google Scholar
Woodburne, M. O. 2010. The Great American Biotic Interchange: dispersals, tectonics, climate, sea level and holding pens. Journal of Mammalian Evolution, 17:245264.Google Scholar
Wright, D. B. 1998. Tayassuidae, p. 389401. InJanis, C. M., Scott, K. M., and Jacobs, L. L.(eds.), Evolution of Tertiary Mammals of North America. Cambridge University Press, Cambridge.Google Scholar