Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T17:00:40.554Z Has data issue: false hasContentIssue false

Macroscopic carbonaceous compressions in a terminal Proterozoic shale: A systematic reassessment of the Miaohe biota, south China

Published online by Cambridge University Press:  14 July 2015

Shuhai Xiao
Affiliation:
1Department of Geology, Tulane University, New Orleans, Louisiana 70118,
Xunlai Yuan
Affiliation:
2Nanjing Institute of Geology and Palaeontology, Academia Sinica, Nanjing 210008, P. R. China
Michael Steiner
Affiliation:
3Technische Universität Berlin, Institut für Geologie und Paläontologie, Sekr. ACK 14, Ackerstrasse 71-76, 13355 Berlin, Germany; and 4Botanical Museum, Harvard University, 26 Oxford Street, Cambridge, Massachusetts 02138
Andrew H. Knoll
Affiliation:
1Department of Geology, Tulane University, New Orleans, Louisiana 70118,

Abstract

Carbonaceous compression fossils in shales of the uppermost Doushantuo Formation (ca. 555-590 Ma) at Miaohe in the Yangtze Gorges area provide a rare Burgess-Shale-type taphonomic window on terminal Proterozoic biology. More than 100 macrofossil species have been described from Miaohe shales, but in an examination of published and new materials, we recognize only about twenty distinct taxa, including Aggregatosphaera miaoheensis new gen. and sp. Most of these fossils can be interpreted unambiguously as colonial prokaryotes or multicellular algae. Phylogenetically derived coenocytic green algae appear to be present, as do regularly bifurcating thalli comparable to red and brown algae. At least five species have been interpreted as metazoans by previous workers. Of these, Protoconites minor and Calyptrina striata most closely resemble animal remains; either or both could be the organic sheaths of cnidarian scyphopolyps, although an algal origin cannot be ruled out for P. minor. Despite exceptional preservation, the Miaohe assemblage contains no macroscopic fossils that can be interpreted with confidence as bilaterian animals. In combination with other late Neoproterozoic and Early Cambrian body fossils and trace fossils, the Doushantuo assemblage supports the view that body-plan diversification within bilaterian phyla was largely a Cambrian event.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossils record: distribution of soft-tissue preservation through the Phanerozoic. Geology, 21:527530.2.3.CO;2>CrossRefGoogle Scholar
Aronson, R. B. 1992. Decline of the Burgess Shale fauna: ecologic or taphonomic restriction? Lethaia, 25:225229.CrossRefGoogle Scholar
Awramik, S. M. 1992. The history and significance of stromatolites, p. 435449. In Schidlowski, M. (ed.), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Ayala, F. J., Rzhetsky, A., and Ayala, F. J. 1998. Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. Proceedings of the National Academy of Sciences, USA, 95:606611.CrossRefGoogle ScholarPubMed
Bengtson, S. 1994. The advent of animal skeletons, p. 412425. In Bengtson, S. (ed.), Early Life on Earth. Columbia, New York.Google Scholar
Bengtson, S., and Yue, Z. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451648.CrossRefGoogle Scholar
Berger, S., and Kaever, M. J. 1992. Dasycladales: An Illustrated Monograph of a Fascinating Algal Order. Georg Thieme Verlag, Stuttgart, 247 p.Google Scholar
Bi, Z., Wang, X., Zhu, H., Wang, Z., and Ding, F. 1988. The Sinian of southern Anhui. Professional Papers of Stratigraphy and Palaeontology, 2760.Google Scholar
Bold, H. C., and Wynne, M. J. 1985. Introduction to the Algae. Prentice-Hall, Englewood Cliffs, New Jersey, 1720 p.Google Scholar
Brasier, M. D., and McIlroy, D. 1998. Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. Journal of the Geological Society, London, 155:512.CrossRefGoogle Scholar
Bromham, L., Rambaut, A., Fortey, R., Cooper, A., and Penny, D. 1998. Testing the Cambrian Explosion hypothesis by using a molecular dating technique. Proceedings of the National Academy of Sciences, USA, 95:1238612389.CrossRefGoogle ScholarPubMed
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology, 16:272286.CrossRefGoogle Scholar
Butterfield, N. J. 1995. Secular distribution of Burgess-Shale-type preservation. Lethaia, 28:113.CrossRefGoogle Scholar
Butterfield, N. J. 1996. Fossil preservation in the Burgess Shale: Reply. Lethaia, 29:109112.CrossRefGoogle Scholar
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology, 26:386404.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J., and Chandler, F. W. 1992. Paleoenvironmental distribution of Proterozoic microfossils, with an example from the Agu Bay Formation, Baffin Island. Palaeontology, 35:943957.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Chen, J. 1988. Precambrian metazoans of the Huai River drainage area (Anhui, E. China): their taphonomic and ecological evidence. Senkenbergiana Lethaea, 69:189215.Google Scholar
Chen, J., and Erdtmann, B.-D. 1991. Lower Cambrian fossil Lagerstätte from Chengjiang, Yunnan, China: Insights for reconstructing early metazoan life, p. 5776. In Simonetta, A. M. and Conway Morris, S. (ed.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Chen, J., and Zhou, G. 1997. Biology of the Chengjiang fauna. Bulletin of the National Museum of Natural Science (Taipei), No. 10:11105.Google Scholar
Chen, J., Zhou, G., Zhu, M. Y., and Yeh, K. Y. 1996. The Chengjiang Biota: A Unique Window of the Cambrian Explosion. National Museum of Natural History, Taichung, 1222 p.Google Scholar
Chen, M., and Xiao, Z. 1991. Discovery of the macrofossils in the Upper Sinian Doushantuo Formation at Miaohe, eastern Yangtze Gorges. Scientia Geologica Sinica, No. 4:317324.Google Scholar
Chen, M., and Xiao, Z. 1992. Macrofossil biota from upper Doushantuo Formation in eastern Yangtze Gorges, China. Acta Palaeontologica Sinica, 31(5):513529.Google Scholar
Chen, M., Lu, G., and Xiao, Z. 1994a. Preliminary study on the algal macrofossils—Lantian Flora from the Lantian Formation of Upper Sinian in southern Anhui. Bulletin Institute of Geology, Academia Sinica, No. 7:252267.Google Scholar
Chen, M., Chen, Y., and Qian, Y. 1981. Some tubular fossils from Sinian-Lower Cambrian broundary sequences, Yangtze Gorge. Bulletin, Tianjin Institute of Geology and Mineral Resources, 3:117124.Google Scholar
Chen, M., Xiao, Z., and Yuan, X. 1993. First discovery of Beltanelloides podolicus from the upper Sinian in southern China. Scientia Geologica Sinica, 28:312316.Google Scholar
Chen, M., Xiao, Z., and Yuan, X. 1994b. A new assemblage of megafossils—Miaohe biota from Upper Sinian Doushantuo Formation, Yangtze Gorges. Acta Palaeontologica Sinica, 33(4):391403.Google Scholar
Chen, M., Xiao, Z., and Yuan, X. 1995. A great diversification of macroscopic algae in Neoproterozoic. Scientia Geologica Sinica (English Edition), 4:295308.Google Scholar
Chen, X., Rowley, D. B., Rong, J.-Y., Zhang, J., Zhang, Y.-D., and Zhan, R.-B. 1997. Late Precambrian through Early Paleozoic stratigraphic and tectonic evolution of the Nanling region, Hunan Province, South China. International Geology Review, 39:469478.Google Scholar
Collins, A. G., Lipps, J. H., and Valentine, J. W. 2000. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic tracemakers. Paleobiology, 26:4755.2.0.CO;2>CrossRefGoogle Scholar
Conway Morris, S. 1998a. The Crucible of Creation: The Burgess Shale and the Rise of Animals. Oxford University Press, Oxford, 242 p.Google Scholar
Conway Morris, S. 1998b. Early metazoan evolution: reconciling paleontology and molecular biology. American Zoologist, 38:867877.CrossRefGoogle Scholar
Conway Morris, S., and Robison, R. A. 1988. More soft-bodied animals and algae from the Middle Cambrian of Utah and British Columbia. The University of Kansas Paleontological Contributions, No. 122:2384.Google Scholar
Crimes, T. P. 1994. The period of early evolutionary failure and the dawn of evolutionary success: the record of biotic changes across the Precambrian-Cambrian boundary, p. 105133. In Donovan, S. K. (ed.), The Palaeobiology of Trace Fossils. Wiley, New York.Google Scholar
Davidson, E. H., Peterson, K. J., and Cameron, R. A. 1995. Origin of bilaterian body plans: Evolution of developmental regulatory mechanisms. Science, 270:13191325.CrossRefGoogle ScholarPubMed
Ding, L., Zhang, L., Li, Y., and Dong, J. 1992. The Study of the Late Sinian–Early Cambrian Biotas from the Northern Margin of the Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing, 1135 p.Google Scholar
Ding, L., Li, Y., Hu, X., Xiao, Y., Su, C., and Huang, J. 1996. Sinian Miaohe Biota. Geological Publishing House, Beijing, 1221 p.Google Scholar
Eckhardt, R., Schnetter, R., and Seibold, G. 1986. Nuclear behaviour during the life cycle of Derbesia (Chlorophyceae). British Phycological Journal, 21:287295.CrossRefGoogle Scholar
Evans, D. A. D., Li, Z. X., Kirschvink, J. L., and Wingate, M. T. D. 2000. A high-quality mid-Neoproterozoic paleomagnatic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research, 100:313334.CrossRefGoogle Scholar
Fedonkin, M. A. 1990. Paleoichnology of Vendian Metazoa, p. 132137. In Sokolov, B. S. and Iwanowski, A. B. (ed.), The Vendian System, Volume 1, Paleontology. Springer-Verlag, Heidelberg.Google Scholar
Fedonkin, M. A. 1994. Vendian body fossils and trace fossils, p. 370388. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar
Fortey, R. A., Briggs, D. E. G., and Wills, M. A. 1996. The Cambrian evolutionary “explosion”: Decoupling cladogenesis from morphological disparity. Biological Journal of the Linnean Society, 57:1333.Google Scholar
Fritsch, F. E. 1965a. The Structure and Reproduction of the Algae. Volume 1. Cambridge University Press, Cambridge, 1791 p.Google Scholar
Fritsch, F. E. 1965b. The Structure and Reproduction of the Algae. Volume 2. Cambridge University Press, Cambridge. 1939 p.Google Scholar
Gnilovskaya, M. B. 1990. Vendotaenids—Vendian metaphytes, p. 138147. In Sokolov, B. S. and Iwanowski, A. B. (ed.), The Vendian System, Volume 1, Paleontology. Springer-Verlag, Berlin.Google Scholar
Gnilovskaya, M. B., Istchenko, A. A., Kolesniko, C. M., Korenchuk, L. V., and Udalstov, A. P. 1988. Vendotaenids of the East European Platform. Nauka, Leningrad. 140 p. (In Russian)Google Scholar
Golub, I. N. 1979. Novaya gruppa problematichnykh mikroobrazovanij v vendskikh otlozheniyakh Orshanskoj vpadiny (Russkaya platforma). [A new group of problematic microstructures in Vendian deposits of the Orshanka Basin (Russian Platform)], p. 147155. In Sokolov, S. B. (ed.), Paleontologiya Dokembriya i Rannego Kembriya. Nauka, Leningrad.Google Scholar
Graham, L. E., and Wilcox, L. E. 2000. Algae. Prentice Hall, Upper Saddle River, NJ, 640 p.Google Scholar
Grotzinger, J. P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, p. 79106. In Crevello, P. D., Wilson, J. L., Sarg, J. F., and Read, J. F. (ed.), Controls on Carbonate Platform and Basin Development, SEPM special publication No. 44.Google Scholar
Grotzinger, J. P., and Kasting, J. F. 1993. New constraints on Precambrian ocean composition. The Journal of Geology, 101:235243.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., and Knoll, A. H. 1999. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences, 27:313358.CrossRefGoogle ScholarPubMed
Gu, X. 1998. Early metazoan divergence was about 830 million years ago. Journal of Molecular Evolution, 47:369371.CrossRefGoogle ScholarPubMed
Gureev, Y. A. 1985. Vendiata—primitivnye dokembriyskie Radialia [Vendiata—primitive Precambrian Radialia]. Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Geologii i Geofiziki, 632:93103.Google Scholar
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Science, 257:232235.CrossRefGoogle ScholarPubMed
Hermann, T. N. 1990. Organic World Billion Year Ago. Nauka, Leningrad. 149 p.Google Scholar
Hofmann, H. 1992. Proterozoic and selected Cambrian megascopic carbonaceous films, p. 957998. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere, a multidisciplinary study. Cambridge University Press, Cambridge.Google Scholar
Hofmann, H. 1994. Proterozoic carbonaceous compressions (“metaphytes” and “worms”), p. 342357. In Bengtson, S. (ed.), Early Life on Earth. Columbia University Press, New York.Google Scholar
Hofmann, H., and Chen, J. 1981. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Canadian Journal of Earth Sciences, 18:443447.CrossRefGoogle Scholar
Hofmann, H., and Jackson, G. D. 1991. Shelf-facies microfossils from the Uluskan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65:361382.CrossRefGoogle Scholar
Hofmann, H., and Jackson, G. D. 1994. Shale-facies microfossils from the Proterozoic Bylot Supergroup, Baffin Island, Canada. Paleontological Society Memoir, 37:135.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.CrossRefGoogle Scholar
Jankauskas, T. V., Mikhailova, N. S., and Hermann, T. N. 1989. Mikrofossilii Dokembriya SSSR [Precambrian Microfossils of the USSR]. Nauka, Leningrad, 190 p.Google Scholar
Kah, L. C., and Knoll, A. H. 1996. Microbenthic distribution in Proterozoic tidal flats: environmental and taphonomical considerations. Geology, 24:7982.2.3.CO;2>CrossRefGoogle Scholar
Keller, B. M., Menner, V. V., Stepanov, V. A., and Chumakov, N. M. 1974. New finds of fossils in the Precambrian Valday Series along the Syuzma River. Izvestia Akademii Nauk SSSR, Seriya Geologicheskaya, 12:130134.Google Scholar
Knoll, A. H. 1992a. The early evolution of eukaryotes: a geological perspective. Science, 256:622627.CrossRefGoogle Scholar
Knoll, A.H. 1992b. Microfossils in metasedimentary cherts of the Scotia Group, Prins Karls Forland, western Svalbard. Palaeontology, 35:751774.Google Scholar
Knoll, A. H., and Carroll, S. B. 1999. Early animal evolution: emerging views from comparative biology and geology. Science, 284:21292137.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A. H., and Sergeev, V. N. 1995. Taphonomic and evolutionary changes across the Mesoproterozoic- Neoproterozoic transition. Neves Jahrbuch für Geologie und Paläontologie Abhandlungen, 195:289302.CrossRefGoogle ScholarPubMed
Knoll, A. H., and Xiao, S. 1999. On the age of the Doushantuo Formation. Acta Micropalaeontologica Sinica, 16:225236.Google Scholar
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.CrossRefGoogle ScholarPubMed
Kumar, S. 1995. Megafossils from the Mesoproterozoic Rohtas Formation (the Vindhyan Supergroup), Katni area, central India. Precambrian Research, 72:171184.CrossRefGoogle Scholar
Li, Z.-X., Zhang, L., and Powell, C. M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23:407410.2.3.CO;2>CrossRefGoogle Scholar
Lipps, J. H., and Rozanov, A. Y. 1996. The late Precambrian-Cambrian agglutinated fossil Platysolenites . Paleontological Journal, 30:679687.Google Scholar
Liu, H. 1991. The Sinian System in China. Science Press, Beijing, 1388 p.Google Scholar
Mao, J.-R., Zhao, Y.-L., and Yu, P. 1994. Noncalcareous algae of Kaili fauna in Taijiang, Guizhou. Acta Palaeontologica Sinica, 33:345349.Google Scholar
McIlroy, D., Green, O. R., and Braiser, M. D. 1994. The world's oldest foraminiferans. Microscopy and Analysis, November 1994:1315.Google Scholar
Moczydłowska, M., Vidal, G., and Rudavskaya, V. A. 1993. Neoproterozoic (Vendian) phytoplankton from the Siberian Platform, Yakutia. Palaeontology, 36:495521.Google Scholar
Narbonne, G. M., and Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology, 30:647676.Google Scholar
Nikoh, N., Iwabe, N., Kuma, K.-I., Ohno, M., Sugiyama, T., Watanabe, Y., Yasui, K., Zhang, S.-C., Hori, K., Shimura, Y., and Miyata, T. 1997. An estimate of divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata by aldolase and triose phosphate isomerase clocks. Journal of Molecular Evolution, 45:97106.CrossRefGoogle ScholarPubMed
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269309.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 281:11731175.CrossRefGoogle ScholarPubMed
Peterson, K. J., Cameron, R. A., and Davidson, E. H. 2000. Bilaterian origins: Significance of new experimental observations. Developmental Biology, 219:117.CrossRefGoogle ScholarPubMed
Porter, S. M., and Knoll, A. H. 2000. Testate amoebae in the Neoproterozoic Era: evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology, 26:360385.2.0.CO;2>CrossRefGoogle Scholar
Qian, M., Yuan, X., Wang, Y., and Yan, Y. 2000. New material of metaphytes from the Neoproterozoic Jinshanzhai Formation in Huaibei, North Anhui, China. Acta Palaeontologic Sinica, 39:516520.Google Scholar
Qian, Y., and Bengtson, S. 1989. Palaeontology and biostratigraphy of the Early Cambrian Meishucunian Stage in Yunnan Province, South China. Fossils and Strata, 24:1156.Google Scholar
Qian, Y., Chen, M., and Chen, Y. 1979. Hyolithids and other small shelly fossils from the Lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18(3):207232.Google Scholar
Runnegar, B. 2000. Palaeoclimate: Loophole for snowball Earth. Nature, 405:403404.CrossRefGoogle Scholar
Satterthwait, D. F. 1976. Paleobiology and Paleoecology of Middle Cambrian Algae from Western North America. Ph.D. thesis, University of California at Los Angeles.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W., and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Seilacher, A. 1999. Biomat-related lifestyles in the Precambrian. Palaios, 14:8693.CrossRefGoogle Scholar
Seilacher, A., Bose, P. K., and Pflueger, F. 1998. Triploblastic animals more than one billion years ago: trace fossil evidence from India. Science, 281:8083.CrossRefGoogle Scholar
Sokolov, B. S. 1965. The most ancient Early Cambrian deposits and sabelliditids (in Russian). Abstracts, All-Union Syposium on Paleontology of Precambrian and Early Cambrian, Novosibirsk, 7891.Google Scholar
Sokolov, B. S. 1967. Drevneyshiye pogonofory [The oldest Pogonophora]. Doklady Akademii Nauk SSSR, 177(1):201204 (English translation page 252–255).Google Scholar
Sokolov, B. S. 1972. Vendskiy etap v istorii Zemli [The Vendian Period in Earth history]. Paleontologiya, Doklady Sovetskikh Geologov, Akademiya nauk SSSR, 7:114124.Google Scholar
Sokolov, B. S. 1997. Essays on the Advent of the Vendian System. KMK Scientific Press, Moscow, 156 p.Google Scholar
Steiner, M. 1994. Die neoproterozoischen Megaalgen Sudchinas. Berliner geowissenschaftliche Abhandlungen (E), 15:1146.Google Scholar
Steiner, M. 1997. Chuaria circularis Walcott 1899—“megasphaeromorph acritarch” or prokaryotic colony? Acta Universitatis Carolinae Geologica, 40:645665.Google Scholar
Steiner, M., and Fatka, O. 1996. Lower Cambrian tubular micro- to macrofossils from the Paseky Shale of the Barrandian area (Czech Republic). Palaeontologische Zeitschrift, 70(3/4):275299.CrossRefGoogle Scholar
Steiner, M., Erdtmann, B.-D., and Chen, J. 1992. Preliminary assessment of new Late Sinian (Late Proterzoic) large siphonous and filamentous “megaalgae” from eastern Wulingshan, north-central Hunan, China. Berliner geowissenschaftliche Abhandlungen (E), 3:305319.Google Scholar
Sun, W. 1986. Late Precambrian pennatulids (sea pens) from the eastern Yangtze Gorge, China: Paracharnia gen. nov. Precambrian Research, 31:361375.Google Scholar
Sun, W., Wang, G., and Zhou, B. 1986. Macroscopic worm-like body fossils from the Upper Precambrian (900–700Ma), Huainan district, Anhui, China and their stratigraphic and evolutionary significance. Precambrian Research, 31:377403.Google Scholar
Tang, F., Yin, C., and Gao, L. 1997. A new idea of metaphyte fossils from the late Sinian Doushantuo stage at Xiuning, Anhui Province. Acta Geologica Sinica, 71:289296.Google Scholar
Tiwari, M., and Knoll, A. H. 1994. Large acanthomorphic acritarchs from the Infrakrol Formation of the Lesser Himalaya and their stratigraphic significance. Journal of Himalayan Geology, 5:193201.Google Scholar
Towe, K. M. 1996. Fossil preservation in the Burgess Shale. Lethaia, 29:107108.Google Scholar
Tseng, C. K. 1983. Common Seaweeds of China. Science Press, Beijing, 316 p.Google Scholar
Valentine, J. W., Jablonski, D., and Erwin, D. H. 1999. Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development, 126:851859.CrossRefGoogle ScholarPubMed
Vidal, G. 1989. Are late Proterozoic carbonaceous megafossils metaphytic algae or bacteria? Lethaia, 22:375379.CrossRefGoogle Scholar
Vidal, G. 1990. Giant acanthomorph acritarchs from the upper Proterozoic in southern Norway. Palaeontology, 33:287298.Google Scholar
Walcott, C.D. 1919. Cambrian Geology and Paleontology IV: Middle Cambrian algae. Smithsonian Miscellaneous Collections, 67:217260.Google Scholar
Walter, M. R., Du, R., and Horodyski, R. J. 1990. Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. American Journal of Science, 290-A:133148.Google Scholar
Wang, D. Y.-C., Kumar, S., and Hedges, S. B. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proceedings of the Royal Society, Biological Sciences, 266:163171.CrossRefGoogle ScholarPubMed
Wang, X., Erdtmann, B.-D., Chen, X., and Mao, X. 1998. Integrated sequence-, bio- and chemo-stratigraphy of the terminal Proterozoic to lowermost Cambrian “black rock series” from central South China. Episodes, 21:178189.Google Scholar
Werner, B. 1966. Stephanoscyphus (Scyphozoa, Coronatae) und seine direkte Abstammung von den fossilen Conulata. Helgolander wissenschaftliche Meeresuntersuchungen, 13:317347.CrossRefGoogle Scholar
Wheeler, A. E., and Page, J. Z. 1974. The ultrastructure or Derbesia tenuissima (De Notaris) Crouan. I. Organization of the gametophyte protoplast, gametangium, and gametangial pore. Journal of Phycology, 10:336352.Google Scholar
Woods, K., Knoll, A. H., and German, T. 1998. Xanthophyte algae from the Mesoproterozoic/Neoproterozoic transition: confirmation and evolutionary implications. Geological Society of America, Abstracts with Programs, 30:A232.Google Scholar
Wray, G. A., Levinton, J. S., and Shapiro, L. H. 1996. Molecular evidence for deep Precambrian divergences among metazoan phyla. Science, 274:568573.CrossRefGoogle Scholar
Xiao, S., and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.2.0.CO;2>CrossRefGoogle Scholar
Xiao, S., Knoll, A. H., and Yuan, X. 1998a. Morphological reconstruction of Miaohephyton bifurcation, a possible brown alga from the Doushantuo Formation (Neoproterozoic), South China, and its implications for stramenopile evolution. Journal of Paleontology, 72:10721086.CrossRefGoogle Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998b. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.CrossRefGoogle Scholar
Xue, Y., Tang, T., Yu, C., and Zhou, C. 1995. Large Spheroidal Chlorophyta fossils from the Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34(6):688706.Google Scholar
Yan, Y., and Liu, Z. 1997. Tuanshanzian macroscopic algae of 1700 Ma b. p. from Changcheng System of Jixian, China. Acta Palaeontologica Sinica, 36:1841.Google Scholar
Yin, L. 1987. Microbiotas of latest Precambrian sequences in China, p. 415494. In A. S. Nanjing Institute of Geology and Palaeontology (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar
Yuan, X., and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Yuan, X., Li, J., and Cao, R. 1999. A diverse metaphyte assemblage from the Neoproterozoic black shales of South China. Lethaia, 32:143155.Google Scholar
Yuan, X., Li, J., and Chen, M. 1995. Development and their fossil records of metaphytes from late Precambrian. Acta Palaeontologica Sinica, 34(1):90102.Google Scholar
Yue, Z., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides . Lethaia, 32:181195.Google Scholar
Zang, W., and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. The Association of Australasia Palaeontologists, Memoir 12:1132.Google Scholar
Zhang, X., and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.CrossRefGoogle ScholarPubMed
Zhang, Y. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113132.Google Scholar
Zhang, Y., and Yuan, X. 1992. New data on multicellular thallophytes and fragments of cellular tissues from late Proterozoic phosphate rocks, South China. Lethaia, 25:118.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. The Paleontological Society, Memoir, 50:152.Google Scholar
Zhang, Z. 1985. Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China. Precambrian Research, 28:163173.CrossRefGoogle Scholar
Zhao, Z., Xing, Y., Ma, G., and Chen, Y. 1985. Biostratigraphy of the Yangtze Gorge Area, (1) Sinian. Geological Publishing House, Beijing, 1143 p.Google Scholar
Zhao, Z., Xing, Y., Ding, Q., Liu, G., Zhao, Y., Zhang, S., Meng, X., Yin, C., Ning, B., and Han, P. 1988. The Sinian System of Hubei. China University of Geosciences Press, Wuhan, 1205 p.Google Scholar
Zhu, S., and Chen, H. 1995. Megascopic multicellular organisms from the 1700-million-year- old Tuanshanzi Formation in the Jixian area, North China. Science, 270:620622.Google Scholar
Zhu, W., and Chen, M. 1984. On the discovery of macrofossil algae from the late Sinian in the eastern Yangtze Gorges, south China. Acta Botanica Sinica, 26(5):558560.Google Scholar