Skip to main content
Log in

A controllable stitch layout strategy for random needle embroidery

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

Random needle embroidery (RNE) is a graceful art enrolled in the world intangible cultural heritage. In this paper, we study the stitch layout problem and propose a controllable stitch layout strategy for RNE. Using our method, a user can easily change the layout styles by adjusting several high-level layout parameters. This approach has three main features: firstly, a stitch layout rule containing low-level stitch attributes and high-level layout parameters is designed; secondly, a stitch neighborhood graph is built for each region to model the spatial relationship among stitches; thirdly, different stitch attributes (orientations, lengths, and colors) are controlled using different reaction-diffusion processes based on a stitch neighborhood graph. Moreover, our method supports the user in changing the stitch orientation layout by drawing guide curves interactively. The experimental results show its capability for reflecting various stitch layout styles and flexibility for user interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adabala, N., Magnenat-Thalmann, N., Fei, G., 2003. Real-time rendering of woven clothes. Proc. ACM Symp. on Virtual Reality Software and Technology, p.41–47. [doi:10.1145/1008653.1008663]

    Google Scholar 

  • Bratkova, M., Shirley, P., Thompson, W.B., 2009. Artistic rendering of mountainous terrain. ACM Trans. Graph., 28(4):1–17. [doi:10.1145/1559755.1559759]

    Article  Google Scholar 

  • Chen, H., Zhu, S.C., 2006. A generative sketch model for human hair analysis and synthesis. IEEE Trans. Patt. Anal. Mach. Intell., 28(7):1025–1040. [doi:10.1109/TPAMI.2006.131]

    Article  Google Scholar 

  • Chen, S.G., Sun, Z.X., Xiang, J.H., et al., 2011. Research on the technology of computer aided irregular needling embroidery. Chin. J. Comput., 34(3):526–538 (in Chinese). [doi:10.3724/SP.J.1016.2011.00526]

    Article  Google Scholar 

  • Chen, X.L., McCool, M., Kitamoto, A., et al., 2012. Embroidery modeling and rendering. Proc. Graphics Interface Conf., p.131–139.

    Google Scholar 

  • Collomosse, J.P., Hall, P.M., 2002. Painterly rendering using image salience. Proc. 20th Eurographics UK Conf., p.122–128. [doi:10.1109/EGUK.2002.1011281]

    Chapter  Google Scholar 

  • Curtis, C.J., Anderson, S.E., Seims, J.E., et al., 1997. Computer-generated watercolor. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.421–430. [doi:10.1145/258734.258896]

    Google Scholar 

  • Deussen, O., Hiller, S., van Overveld, C., et al., 2000. Floating points: a method for computing stipple drawings. Comput. Graph. Forum, 19(3):41–50. [doi:10.1111/1467-8659.00396]

    Article  Google Scholar 

  • Ding, Z.A., Zhang, X., Chen, W., et al., 2012. Coherent streamline generation for 2-D vector fields. Tsinghua Sci. Technol., 17(4):463–470. [doi:10.1109/TST.2012.6297592]

    Article  MathSciNet  Google Scholar 

  • Dogrusoz, U., Belviranli, M.E., Dilek, A., 2013. CiSE: a circular spring embedder layout algorithm. IEEE Trans. Visual. Comput. Graph., 19(6):953–966. [doi:10.1109/TVCG.2012.178]

    Article  Google Scholar 

  • Gamito, M.N., Maddock, S.C., 2009. Accurate multidimensional Poisson-disk sampling. ACM Trans. Graph., 29(1): 8:1–8:19. [doi:10.1145/1640443.1640451]

    Article  Google Scholar 

  • Gansner, E.R., Hu, Y.F., North, S., 2013. A maxent-stress model for graph layout. IEEE Trans. Visual. Comput. Graph., 19(6):927–940. [doi:10.1109/TVCG.2012.299]

    Article  Google Scholar 

  • Guo, C.E., Zhu, S.C., Wu, Y.N., 2007. Primal sketch: integrating structure and texture. Comput. Vis. Image Underst., 106(1):5–19. [doi:10.1016/j.cviu.2005.09.004]

    Article  Google Scholar 

  • Hausner, A., 2001. Simulating decorative mosaics. Proc. 28th Annual Conf. on Computer Graphics and Interactive Techniques, p.573–580. [doi:10.1145/383259.383327]

    Google Scholar 

  • Hays, J., Essa, I., 2004. Image and video based painterly animation. Proc. 3rd Int. Symp. on Non-photorealistic Animation and Rendering, p.113–120. [doi:10.1145/987657. 987676]

    Chapter  Google Scholar 

  • Hertzmann, A., 2003. A survey of stroke-based rendering. IEEE Comput. Graph. Appl., 23(4):70–81. [doi:10.1109/MCG.2003.1210867]

    Article  Google Scholar 

  • Huang, H., Fu, T.N., Li, C.F., 2011. Painterly rendering with content-dependent natural paint strokes. Vis. Comput., 27(9):861–871. [doi:10.1007/s00371-011-0596-5]

    Article  Google Scholar 

  • Inglis, T.C., Inglis, S., Kaplan, C.S., 2012. Op art rendering with lines and curves. Comput. Graph., 36(6):607–621. [doi:10.1016/j.cag.2012.03.003]

    Article  Google Scholar 

  • Kaldor, J.M., James, D.L., Marschner, S., 2008. Simulating kintted cloth at the yarn level. ACM Trans. Graph., 27(3): 65:1–65:9. [doi:10.1145/1360612.1360664]

    Article  Google Scholar 

  • Kalnins, R.D., Markosian, L., Meier, B.J., et al., 2002. WYSIWYG NPR: drawing strokes directly on 3D models. ACM Trans. Graph., 21(3):755–762. [doi:10.1145/566 654.566648]

    Article  Google Scholar 

  • Kang, H., Lee, S.Y., Chui, C.K., 2007. Coherent line drawing. Proc. 5th Int. Symp. on Non-photorealistic Animation and Rendering, p.43–50. [doi:10.1145/1274871.1274878]

    Google Scholar 

  • Kondo, S., Miura, T., 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329(5999):1616–1620. [doi:10.1126/science.117 9047]

    Article  MathSciNet  MATH  Google Scholar 

  • Kopf, J., Cohen-Or, D., Deussen, O., et al., 2006. Recursive Wang tiles for real-time blue noise. ACM Trans. Graph., 25(3):509–518. [doi:10.1145/1141911.1141916]

    Article  Google Scholar 

  • Litwinowicz, P., 1997. Processing images and video for an impressionist effect. Proc. 24th Annual Conf. on Computer Graphics and Interactive Techniques, p.407–414.

    Google Scholar 

  • Lu, J., Sander, P.V., Finkelstein, A., 2010. Interactive painterly stylization of images, videos and 3D animations. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.127–134. [doi:10.1145/1730804.1730825]

    Google Scholar 

  • Luft, T., Deussen, O., 2006. Real-time watercolor illustrations of plants using a blurred depth test. Proc. 4th Int. Symp. on Non-photorealistic Animation and Rendering, p.11–20. [doi:10.1145/1124728.1124732]

    Chapter  Google Scholar 

  • Mao, X.Y., Nagasaka, Y., Imamiya, A., 2002. Automatic generation of pencil drawing from 2D images using line integral convolution. SIGGRAPH, p.149. [doi:10.1145/1242073.1242162]

    Google Scholar 

  • Martín, D., Arroyo, G., Luzón, M., et al., 2010. Example-based stippling using a scale-dependent grayscale process. Proc. 8th Int. Symp. on Non-photorealistic Animation and Rendering, p.51–61. [doi:10.1145/1809939.1809946]

    Google Scholar 

  • O’Donovan, P., Hertzmann, A., 2012. AniPaint: interactive painterly animation from video. IEEE Trans. Visual. Comput. Graph., 18(3):475–487. [doi:10.1109/TVCG. 2011.51]

    Article  Google Scholar 

  • Park, Y., Yoon, K., 2008. Painterly animation using motion maps. Graph. Models, 70(1):1–15. [doi:10.1016/j.gmod.2007.06.001]

    Article  Google Scholar 

  • Peng, C.H., Yang, Y.L., Wonka, P., 2014. Computing layouts with deformable templates. ACM Trans. Graph., 33(4), Article 99. [doi:10.1145/2601097.2601164]

    Google Scholar 

  • Perona, P., 1998. Orientation diffusions. IEEE Trans. Image Process., 7(3):457–467. [doi:10.1109/83.661195]

    Article  Google Scholar 

  • Salisbury, M.P., Anderson, S.E., Barzel, R., et al., 1994. Interactive pen-and-ink illustration. Proc. 21st Annual Conf. on Computer Graphics and Interactive Techniques, p.101–108. [doi:10.1145/192161.192185]

    Google Scholar 

  • Sanderson, A.R., Kirby, R.M., Johnson, C.R., et al., 2006. Advanced reaction-diffusion models for texture synthesis. Graph. GPU Game Tools, 11(3):47–71. [doi:10.1080/2151237X.2006.10129222]

    Article  Google Scholar 

  • Santella, A., DeCarlo, D., 2002. Abstracted painterly renderings using eye-tracking data. Proc. 2nd Int. Symp. on Non-photorealistic Animation and Rendering. [doi:10.1145/508530.508544]

    Google Scholar 

  • Secord, A., 2002. Weighted Voronoi stippling. Proc. 2nd Int. Symp. on Non-photorealistic Animation and Rendering, p.37–43. [doi:10.1145/508530.508537]

    Chapter  Google Scholar 

  • Shiraishi, M., Yamaguchi, Y., 2000. An algorithm for automatic painterly rendering based on local source image approximation. Proc. 1st Int. Symp. on Non-photorealistic Animation and Rendering, p.53–58. [doi:10.1145/340916.340923]

    Chapter  Google Scholar 

  • Shotton, J., Winn, J., Rother, C., et al., 2006. Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. Proc. 9th European Conf. on Computer Vision, p.1–15. [doi:10.1007/11744023_1]

    Google Scholar 

  • Turk, G., 1991. Generating textures on arbitrary surfaces using reaction-diffusion. Proc. 18th Annual Conf. on Computer Graphics and Interactive Techniques, p.289–298. [doi:10.1145/122718.122749]

    Google Scholar 

  • Vanderhaeghe, D., Barla, P., Thollot, J., et al., 2007. Dynamic point distribution for stroke-based rendering. Proc. 18th Eurographics Conf. on Rendering Techniques, p.139–146. [doi:10.2312/EGWR/EGSR07/139-146]

    Google Scholar 

  • Wyvill, B., Overveld, K., Carpendale, S., 2004. Rendering cracks in batik. Proc. 3rd Int. Symp. on Non-photorealistic Animation and Rendering, p.61–149. [doi:10.1145/987 657.987667]

    Chapter  Google Scholar 

  • Xie, N., Laga, H., Saito, S., et al., 2010. IR2s: interactive real photo to Sumi-e. Proc. 8th Int. Symp. on Nonphotorealistic Animation and Rendering, p.63–71. [doi:10. 1145/1809939.1809947]

    Google Scholar 

  • Xu, J., Kaplan, C.S., 2007. Image-guided maze construction. ACM Trans. Graph., 26(3):29–38. [doi:10.1145/1276377. 1276414]

    Article  Google Scholar 

  • Xu, K., Wang, J.P., Tong, X., et al., 2009a. Edit propagation on bidirectional texture functions. Comput. Graph. Forum, 28(7):1871–1877. [doi:10.1111/j.1467-8659.2009.01565.x]

    Article  Google Scholar 

  • Xu, K., Li, Y., Ju, T., et al., 2009b. Efficient affinity-based edit propagation using K-D tree. ACM Trans. Graph., 28(5), Article 118. [doi:10.1145/1661412.1618464]

    Google Scholar 

  • Xu, K., Chen, K., Fu, H.B., et al., 2013. Sketch2scene: sketchbased co-retrieval and co-placement of 3D models. ACM Trans. Graph., 32(4):123:1–123:12. [doi:10.1145/2461912. 2461968]

    Article  Google Scholar 

  • Xu, X., Zhang, L., Wong, T.T., 2010. Structure-based ASCII art. ACM Trans. Graph., 29(4), Article 52. [doi:10.1145/1778765.1778789]

    Google Scholar 

  • Yamamoto, S., Mao, X., Imamiya, A., 2004. Colored pencil filter with custom colors. Proc. 12th Pacific Conf. on Computer Graphics and Applications, p.329–338. [doi:10.1109/PCCGA.2004.1348364]

    Google Scholar 

  • Yang, Y.L., Wang, J., Vouga, E., et al., 2013. Urban pattern: layout design by hierarchical domain splitting. ACM Trans. Graph, 32(6):181:1–181:12. [doi:10.1145/2508363.2508405]

    Article  Google Scholar 

  • Yuan, X.R., Che, L.M., Hu, Y.F., et al., 2012. Intelligent graph layout using many users’ input. IEEE Trans. Visual. Comput. Graph., 18(12):2699–2708. [doi:10.1109/TVCG.2012.236]

    Article  Google Scholar 

  • Zeng, K., Zhao, M.T., Xiong, C.M., et al., 2009. From image parsing to painterly rendering. ACM Trans. Graph., 29(1): 2:1–2:11. [doi:10.1145/1640443.1640445]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-xing Sun.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61272219, 61100110, and 61321491), the National High-Tech R&D Program (863) of China (No. 2007AA01Z334), the Key Projects Innovation Fund of State Key Laboratory (No. ZZKT2013A12), the Program for New Century Excellent Talents in Universities, China (No. NCET04-04605), the Science and Technology Program of Jiangsu Province (Nos. BE2010072, BE2011058, and BY2012190), and the Scientific Research Foundation of Graduate School of Nanjing University (No. 2012CL21), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Sun, Zx. & Yang, Kw. A controllable stitch layout strategy for random needle embroidery. J. Zhejiang Univ. - Sci. C 15, 729–743 (2014). https://doi.org/10.1631/jzus.C1400099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1400099

Key words

CLC number

Navigation