Skip to main content
Log in

Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm

  • Published:
Journal of Zhejiang University SCIENCE C Aims and scope Submit manuscript

Abstract

This paper presents a ranked differential evolution (RDE) algorithm for solving the identification problem of non-linear discrete-time systems based on a Volterra filter model. In the improved method, a scale factor, generated by combining a sine function and randomness, effectively keeps a balance between the global search and the local search. Also, the mutation operation is modified after ranking all candidate solutions of the population to help avoid the occurrence of premature convergence. Finally, two examples including a highly nonlinear discrete-time rational system and a real heat exchanger are used to evaluate the performance of the RDE algorithm and five other approaches. Numerical experiments and comparisons demonstrate that the RDE algorithm performs better than the other approaches in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu, B.V., Angira, R., 2006. Modified differential evolution (MDE) for optimization of non-linear chemical processes. Comput. Chem. Eng., 30(6–7):989–1002. [doi:10.1016/j.compchemeng.2005.12.020]

    Article  Google Scholar 

  • Brest, J., Greiner, S., Boskovic, B., et al., 2006. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput., 10(6):646–657. [doi:10.1109/TEVC.2006. 872133]

    Article  Google Scholar 

  • Chang, W.D., 2012. Volterra filter modeling of nonlinear discrete-time system using improved particle swarm optimization. Dig. Signal Process., 22(6):1056–1062. [doi: 10.1016/j.dsp.2012.07.005]

    Article  Google Scholar 

  • Cheng, C.H., Powers, E.J., 2001. Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs. IEEE Trans. Signal Process., 49(1):147–163. [doi:10.1109/78.890357]

    Article  Google Scholar 

  • Contan, C., Kirei, B.S., Topa, M.D., 2013. Modified NLMF adaptation of Volterra filters used for nonlinear acoustic echo cancellation. Signal Process., 93(5):1152–1161. [doi:10.1016/j.sigpro.2012.11.017]

    Article  Google Scholar 

  • Derrac, J., García, S., Molina, D., et al., 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput., 1(1):3–18. [doi:10.1016/j.swevo.2011.02.002]

    Article  Google Scholar 

  • Ji, W., Gan, W.S., 2012. Identification of a parametric loud-speaker system using an adaptive Volterra filter. Appl. Acoust., 73(12):1251–1262. [doi:10.1016/j.apacoust.2012. 03.007]

    Article  Google Scholar 

  • Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. Proc. IEEE Int. Conf. on Neural Networks, p.1942–1948. [doi:10.1109/ICNN.1995.488968]

    Google Scholar 

  • Krall, C., Witrisal, K., Leus, G., et al., 2008. Minimum mean-square error equalization for second-order Volterra systems. IEEE Trans. Signal Process., 56(10):4729–4737. [doi:10.1109/TSP.2008.928167]

    Article  MathSciNet  Google Scholar 

  • Kuruoğlu, E.E., 2002. Nonlinear least lp-norm filters for non-linear autoregressive α-stable processes. Dig. Signal Process., 12(1):119–142. [doi:10.1006/dspr.2001.0416]

    Article  Google Scholar 

  • Li, X., Yin, M., 2012. Optimal synthesis of linear antenna array with composite differential evolution algorithm. Sci. Iran., 19(6):1780–1787. [doi:10.1016/j.scient.2012.03.010]

    Article  Google Scholar 

  • Mleczko, M., Postema, M., Schmitz, G., 2009. Discussion of the application of finite Volterra series for the modeling of the oscillation behavior of ultrasound contrast agents. Appl. Acoust., 70(10):1363–1369. [doi:10.1016/j.apacoust. 2008.09.012]

    Article  Google Scholar 

  • Nam, S.W., Powers, E.J., 2003. Volterra series representation of time-frequency distributions. IEEE Trans. Signal Process., 51(6):1532–1537. [doi:10.1109/TSP.2003.811241]

    Article  MathSciNet  Google Scholar 

  • Shi, Y.H., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. Proc. Congress on Evolutionary Computation, p.1945–1950. [doi:10.1109/CEC.1999. 785511]

    Google Scholar 

  • Storn, R., Price, K., 1995. Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces. International Computer Science Institute, Berkeley, USA.

    Google Scholar 

  • Sumar, R.R., Coelho, A.A.R., Coelho, L.D.S., 2010. Computational intelligence approach to PID controller design using the universal model. Inform. Sci., 180(20):3980–3991. [doi:10.1016/j.ins.2010.06.026]

    Article  Google Scholar 

  • Tang, H., Liao, Y.H., Cao, J.Y., et al., 2010. Fault diagnosis approach based on Volterra models. Mech. Syst. Signal Process., 24(4):1099–1113. [doi:10.1016/j.ymssp.2009. 09.001]

    Article  Google Scholar 

  • Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometr. Bull., 1(6):80–83.

    Article  Google Scholar 

  • Zhang, J.S., Zhao, H.Q., 2010. A novel adaptive bilinear filter based on pipelined architecture. Dig. Signal Process., 20(1):23–38. [doi:10.1016/j.dsp.2009.06.006]

    Article  Google Scholar 

  • Zou, D.X., Liu, H.K., Gao, L.Q., et al., 2011. An improved differential evolution algorithm for the task assignment problem. Eng. Appl. Artif. Intell., 24(4):616–624. [doi:10.1016/j.engappai.2010.12.002]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-xuan Zou.

Additional information

Project supported by the Science Fundamental Research Project of Jiangsu Normal University, China (No. 9212812101)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Dx., Gao, Lq. & Li, S. Volterra filter modeling of a nonlinear discrete-time system based on a ranked differential evolution algorithm. J. Zhejiang Univ. - Sci. C 15, 687–696 (2014). https://doi.org/10.1631/jzus.C1300350

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.C1300350

Key words

CLC number

Navigation